水利施工中软土地基处理技术 王闯

发表时间:2021/6/23   来源:《基层建设》2021年第8期   作者:王闯
[导读] 摘要:利工程建设中涉及诸多内容,其中首要的就是地基结构,水利工程规模越大,对地基的要求越高,但由于水利工程选址的特殊性,大部分的工程项目都会遇上软土地基,这种含水量高、土质松软、荷载力差地质条件提高了施工风险和难度,若不能对软土地基进行恰当地处理,会因为不均匀沉降等问题造成极为严重的安全事故。
        平原县水利局  山东徳州  253100
        摘要:利工程建设中涉及诸多内容,其中首要的就是地基结构,水利工程规模越大,对地基的要求越高,但由于水利工程选址的特殊性,大部分的工程项目都会遇上软土地基,这种含水量高、土质松软、荷载力差地质条件提高了施工风险和难度,若不能对软土地基进行恰当地处理,会因为不均匀沉降等问题造成极为严重的安全事故。基于此本文就水利施工中软土地基处理技术进行阐述,以供参考。
        关键词:水利工程;软土地基;处理技术;
        1软土地基的基本特征
        1.1触变性
        软土地基是我国在开展水利项目实施时所面临的重要问题,其自身具有较为明显的触变性。主要体现为,软土地基是絮凝状的固态物质,由沉积物形成的固态物质具有较高的灵敏性。虽然软土地基具有一定的结构强度,但在其灵敏性的作用下,在作为地基使用时,如果对其施加过大的外力,便会导致其内部结构遭到破坏,严重时会影响地基在项目中发挥的功能作用。因此在实施软土地基地使用时,需全面衡量水利工程所具有的触变性,以此保障项目工程不会受到软土地基触变性的影响,辅助工程建设后能够达到理想的质量要求。
        1.2孔隙较大
        软土地基地另一个显著特征为孔隙大。孔隙产生的主要原因为软土地基中的水含量较高,因此构成软土地基地颗粒间,会由于水分而产生一定的胶结,这也为软土地基地压实性能形成了较大的阻碍。软土地基会因为自身湿度过大而降低压实能力,且在颗粒间还会形成较大的孔隙。该特征会导致在具体实施水利项目时,应用软土地基需投入更多的人力和资金成本,通过长时间的压实处理才可使用,但这个过程也会由于软土地基地触变性特征而出现沉降现象。因此在实施水利项目建设时,应用软土地基一个充分考虑到其孔隙方面的特征,以此保证工程实施不会受到孔隙特征的较大程度制约。
        2水利施工中软土地基的特点与危害
        2.1土质分布不均
        软土地基土层结构比较复杂,会有多种成分的土壤混杂,按照土层深度排布,各层之间会有明显的性能差异,土质密度并不均匀,不同土质的承载性有差异,会对地基构造产生不同的影响,如果在施工前未对软土地基加以处理,会导致基础工程的强度不达标,上部水利工程在施工后期会出现不规则塌陷,影响水利工程的质量和安全。
        2.2强度较低
        水利工程对于水利的使用年限以及质量都有很高的要求,但是由于软土地基自身组成成分特性的限制,含水量较高且结构松软,因而软土地基强度比较低,早期沉降可能不明显,如果出现外力干扰或者在上部荷载的长期持续施压过程中,在地基所承受的压力不断变化的情况下会表现出较高的压缩性,稳定性变差,易发生形变,出现裂缝以及坍塌等事故,特别是在地震等自然灾害期间,安全隐患加大,严重影响水利工程的使用。
        2.3透水性差
        水利工程的软土地基本身含有淤泥成分,因而含水量较高,还具有一定的黏性,这也导致其透水性非常差,表层水无法向下渗透,地基积水严重,直接影响到软土地基地稳固性和安全性,而且上部水利工程设施与雨水长期接触易受到侵蚀损坏,水利工程的使用性能和寿命降低,因此在进行软土地基处理时需要投入大量的人力和物力来做好排水工作,使得施工时间和成本都有一定的增加。


        2.4沉降频率高
        水利工程建设周期较长,而软土地基又具有较强的压缩性,部分软土地基在建设之后也一直处于不明显的沉降状态中,此外本身软土地基地强度就较低,土壤承载力有限,随着工程推进,在软土地基上部荷载、外部荷载的共同作用之下,软土地基承受压力不断地增加,将无法承受水利工程建筑结构的自重,沉降速度也会越来越快,当沉降值超出工程安全标准就会出现倾斜、失稳以及坍塌等问题,从而严重影响水利工程的建设质量以及进度,威胁水利工程建筑结构的稳定性。
        3软土地基处理技术应用分析
        3.1换填垫层技术
        该类技术大多应用于处理厚度为2~3cm的软土层,在实际施工时,可先对表面的软土层进行清除,此后再更换成稳定性更强的物质。可替换的填垫层物质可为卵石或者砂石等。这类物质具有较高的密度和强度,且透气性较为理想,可压缩性较低,因此不仅能够表现出较为明显的强度优势,还能在压缩性和透气性等方面达到标准要求,从而良好实现压实处理,以此提升地基的稳定性和承载力,降低沉降现象的发生概率,促进软土层能够顺利完成排水固结。具体来说,具有一定硬度的砂石和碎石均可作为可选物质,但不能在其中混入风化材料等杂物。如果使用质量水平较高的砂砾,则需将砂砾的不均匀系数控制在10以上。砂砾石均可通过相关的密度试验来判定材料的具体性能及所具有的密度。如果材料储备量不够,可使用细砂进行填充,同时加入卵石或者碎石,全面清除杂物后,将石量控制在50%范围内为宜。如果坑内存有积水,则需使用排水技术先将积水进行清除,同时做好浮土的处理工作,从而进一步完善该区域的地基巩固效果,最后再放入填充料完成铺设工作。此外在完成填充后,需进一步进行夯实,整体提升地基地承载能力,避免发生变形等情况。在选择底层材料时,可倾向于使用压缩性较低、强度较高的材质,同时在填充过程中一旦出现孔隙,则需使用透水性较高的材料进行排水处理,从而提升软土地凝结效率,减少冻胀等产生的涨缩情况。
        在具体实施项目建设时,应按照行业标准的程序实施,运用材料进行施工区域的铺平处理,同时做好接头部分的施工,层级之间应设置一定距离。施工人员可使用夯实、水振等多种方式实施铺设工作,并建立一定的排水系统,保持工地能够正常排水,避免出现冲刷等情况。如果工程实施遇到雨季,便需使用有效的措施对现场的废料进行清理,将其放置在与河道农田较远的区域。
        3.2水泥土搅拌桩
        实施水泥土加固,便是在加固的过程中发生的物理和化学反应,其与混凝土的硬化原理还具有一定的区别。混凝土硬化是水泥与填充物质所产生的水化和水解,其发生凝结的速度较快。而水泥加固土中的水泥量不高,最多可为加固土的1/5,水泥产生的水解等化学反应也在活性介质内完成,其强度提升的速度较混凝土更低。
        当前工程所使用的搅拌桩布桩方式可为格构式和柱状形式。以前者为例,通常应用于软土地基和粉砂中能够产生更为理想的效果。软土地基发生沉降的原因主要为侧向出现变形的情况,通过研究结果可知,在软土地基中使用悬浮的搅拌桩,便可有效对软土的侧向进行控制,从而降低发生沉降的概率。格构式布桩方式能够深入到软土层,将所有的软土均控制在基底之内。实际实施项目工程时,还应同时考虑到搅拌桩与其他的管桩综合使用所产生的技术问题,建筑物的地基反力差别过大,在同一工程内便需使用多个地基地处理策略。为切实缩小不同建筑物连接点的沉降差异,技术人员应侧重对技术进行优化使用。在地基应力较小的条件下,可不设置搅拌桩的褥垫层,在选择具体的土沉降参数时,需结合工程的实际需求,从总体层面了解掌握搅拌桩的质量情况,使用多种检测技术对其进行科学地检测。
        4结语
        总之,软土地基有其特殊性,带来的工程潜在风险不可小觑,因此软土地基处理是水利工程中必不可少的一步,这就要求相关部门要严肃对待软土地基加固的施工环节,特别是在现今水利工程的高速发展时期,为了保障水利施工建设项目质量,促进其良好发展,相关技术人员一定要加强对地基处理技术的研究,并努力提升自己的专业综合水平,选择科学合理的技术方案,实现对各种软土地基处理技术的灵活运用,从而切实高效解决施工问题,降低施工风险,使软土地基地加固满足水利工程建设的有关要求,有效提高水利工程基础结构的稳定性与安全性。
        参考文献:
        [1]何正恒.水利施工中软土地基处理技术的分析[J].绿色环保建材,2020(02):242.
        [2]范中斌.探析水利工程施工中软土地基处理技术[J].建筑技术研究,2019,002(005):P.161-162.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: