“一题多解”与“多题一解”思想在高中数学学习中的渗透

发表时间:2020/12/8   来源:《基础教育课程》2020年8月   作者:谢文龙
[导读] 高中教学中高三是学生重要的学习阶段,这一阶段的学习主要是以复习为主,而学生的复习效果以及学习效率和质量很大程度上对学生未来的发展产生重要影响。

云南省大理州大理市下关第一中学  谢文龙  671000

摘要:高中教学中高三是学生重要的学习阶段,这一阶段的学习主要是以复习为主,而学生的复习效果以及学习效率和质量很大程度上对学生未来的发展产生重要影响因此针对高三数学教师应能在教学中合理应用“一题多解”和“多题一解”的数学思想和方法,强化学生对数学知识的认识和掌握,强化学生的复习效果,促进学生数学解题能力、数学思维能力等的提升,促进学生的全面综合发展。
关键词:一题多解;多题一解;高中数学
        一、引言
        高中数学具有一定的抽象性,学生在学习过程中较为吃力,而在高三这一阶段主要是以复习为主,部分学生尽管对数学基础知识的掌握效果较好,但在实际应用中的效果明显较差,甚至整个解题效率和质量显著较低。通过分析研究主要是学生在数学知识的复习和学习过程中逻辑思维能力较差,不能有效把握数学题和知识之间的内在联系,整个学习较为死板化,固定化,很难在短时间提升自身数学综合素质本文则是对高中数学中“一题多解”和“多题一解”这两种数学思想的概念进行分析,并在此基础上研究相应地渗透措施,以此培养学生形成良好的数学思想,从而推动其数学素质的提升。
        二、高中数学中“一题多解”和“多题一解”概念分析
         (一)“一题多解”的概念分析
        实际上对数学知识的学习的最终目标则是能够合理应用数学知识和数学思想解决难题,是高中数学教师在教学过程中需要提高重要的重要内容,对强化学生对数学的认知,培养学生的数学思维和逻辑思维能力发挥着重要作用。其中“一题多解”是高中数学教学中经常被应用得教学方式,坚持的是以数学原题为整个教学活动的中心,根据原题的特点和形式等为基础,对其知识和内涵等合理延伸和深入,进而体现数学知识的本质或非本质特点。在高中数学教学过程中对学生渗透“一题多解”教学方法能够将数学问题的整个解题过程层次化、逻辑化、甚至简单化,对增强学生的思维能力具有重要作用,在一定程度上提升了学生的解题兴趣。此外通过这一方法的渗透能够帮助学生对数学问题有全面的认识,对数学知识和数学问题之间的联系有深刻的理解,有利于提升学生的解题效率。
        (二)“多题一解”的概念分析
        “多题一解”主要是在高中数学解题教学中,部分数学题目所涉及的知识点相似,题目之间具有较高的相似性,通过思考和研究后可明确解决这些问题具有一定地通法,能够在实践中应用,而这就是“多题一解”思想存在的重要意义。这一数学思想的主要来源则是通过“一题多变”和“一法多用”两种变式得出的,且在解题过程中引导学生应用逆向思维方式,将一题转变为一类题,通过相同的解题方法进行解决。总体上来讲这一数学解题方法对学生基础知识的掌握和理解程度较高,并以此为前提,让学生在领悟数学知识的基础上能够对知识合理应用和转变,并在解题过程中形成相应地解题技巧,进而达到解决其他问题的目的。



        三、“一题多解”与“多题一解”思想在高中数学中渗透方法研究
        (一)创设教学情景,合理变换应用
        在高三数学教学中将“一题多解”和“多题一解”数学思想进行渗透首先需要教师能够为学生创设相应地教学情景,让学生在教学情景中能够对这两种数学思想有深刻全面的认识,从而在此次基础上教师在数学知识讲解过程中对学生进行渗透,让学生受到这两种数学思想的影响和渗透激发其对数学的学习兴趣,培养其灵活多变的数学思维。在数学学习中为学生创设相应地情景,可通过两种方式展开,首先则是通过已知或已掌握的数学知识提出新的数学知识和问题,其次则是通过实际生活中的数学问题引出教学内容,在此基础上渗透相应地数学思想。例如在高三数学知识中讲解人教A版中“充分条件和必要条件”这一知识时,教师可让学生通过举例生活中与充分条件和必要条件相关的事例进行理解,从而为学生创造相应地教学情景,在此过程中对学生渗透充分和必要条件具备多种表达方式这一“一题多变”数学思想。
        (二)强化学生的主动学习性,引导学生的理解和认识
        提升学生对高三数学学习的自主性和积极性,需要教师能够激发学生对数学的学习兴趣。而应用“一题多解”和“多题一解”的数学思想能够让学生对数学知识有充分的理解和认识,并在解题过程中合理应用这两种数学思想解决类似的数学问题,在一定程度上能够促使学生提升数学解题的自信心和兴趣,同时有利于学生提升解题效率和质量,对促进学生对知识的再次认识和掌握发挥着重要作用,这就要求教师能够在数学教学中通过合理的教学方式如提问等方式引导学生
        强化学生在高三数学中的自主学习能力,需要教师能够在教学中引导学生应用“一题多解”或“多题一解”的数学思想。例如以高三人教A版中“对双曲线的定义”这一知识为例:为了强化学生的数学思想,教师可引导学生思考研究对定义进行变式,如“平面内到两个定点之间的距离之差的绝对值是常数的轨迹是什么”等让学生在理解的过程中能够思考出更多的提问,从而强化学生对“多题一解”思想的认识和应用。
        (三)合理应用,强化渗透效果
        在高中数学教学中对两种思想方法的渗透需要教师能够让学生在对两种数学知识的认识和理解基础上,引导学生将数学思想融入到数学知识的学习过程中合数学问题的解题中,让学生在把握这两种数学思之间联系的基础上强化学生对不同知识之间联系的认识并总结,从而让自身的数学思维得到升华。因此这就要求教师能够引导学生对同类数学知识和问题进行归纳.例如以人教A版中“等比数列的求和公式”知识时,教师应积极引导学生对“错位相减法”这一求和公式进行推导。为了促使学生能够应用“一题多解”和“多题一解”数学思想则是创设多种变式题组,提升学生的推导解题技巧,强化数学思维能力。
        总结:总而言之,在高三这一阶段的数学复习中容易受到思维意识的局限,对自身复习效果和效率存在较大的影响,针对这一情况需要教师能够在数学教学中合理应用数学思维,强化学生的思维认识,激发学生数学思维和数学思路的灵活性和多变性,提升对数学解题的兴趣和能力,运用“一题多解”或“多题一解”的数学思想强化学生对数学内在知识的理解和认识,从而强化学生的解题质量和效率,促使学生对数学知识有充分的掌握和理解。
参考文献:
[1]陈芳,任必聪.关于不定积分的一题多解问题[J].西南师范大学学报(自然科学版),2019,44(10):121-125.
[2]王杨,孟秋.基于高中数学一题多解的学习研究[J].国际公关,2020(02):131.

投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: