摘要:随着科学技术的快速发展和生活质量的提高,健康问题已成为大家关注的焦点。然而生活环境的污染、饮食结构的不健康和长期处于现代职场高压环境之下,很多人的身体出现亚健康状态:头痛、胸闷、失眠等健康问题困扰着现代职场白领,长期以往,身体不堪重负,疾病随之而来。面对这种情况,早期发现、早期治疗既可以减轻患者病痛,提高预后水平,又可以减少患者的经济支出。因此,对疾病问题的早期诊断就成为国内外医学界关注的焦点。
关键词:现代医学影像技术;计算机图像处理技术;
图像处理,在医学上也被称作影像处理,是指将图像信号转换成数字信号后使用计算机对医学影像处理和分析,提高并改善影像的质量供医生有效诊断的专业技术。将将人设为对象,图像设为目标,输入低质量的图像,输入改善后高质量的图像,当图像达到满足人的视觉效果为最终目标。图像处理方法通常有图像增强、复原、编码、压缩等等。
1 可行性及意义
在实际图像信号的生成和传输过程中,由于受到医疗器械自身、人为操作控制和自然界噪声等干扰的影响,多多少少会出现细节模糊、对比度差、噪声较大或存在伪影等问题,影响到影像质量。且成像是用亮度不等的灰度表示,加上病灶发展早期其空间形态变化通常比较小,拍出的片子肉眼很难观察,误诊和漏诊的情况也时有发生,致使病情诊断准确率下降,医务工作者的效率也难以体现。因此,有必要运用适当的技术和方法来处理和分析医学影像,提高影像质量,这将有助于减少误诊和漏诊率,提高诊断准确率。因此,研究医学影像的计算机辅助诊断技术和数字图像处理技术具有重要的意义和实用价值。在医学影像领域的数字成像技术有个共性:基于计算机将图像采集、显示、存储和传递分解成各个独立的部分,将每一部分图像信息分别数字化,这种共性为我们以后对各功能模块进行单独优化提供了便利,对其实施图像数字信息的后续处理提供了可行性。
2 现代医学影像技术中计算机图像处理技术的应用
(1)图像去噪。影像的生成和传输常常受到自然界各种声音的干扰导致影像质量下降,就像我们在日常生活中交谈时被其他声音打扰一样,在语言中表现为听不清对方说话,表现到影像上,则是原本很清楚的图像,因为机械本身、电子元件、外界杂音等干扰原因产生各种各样的斑点或条纹,图像变得模糊不清,此即为图像噪声。噪声的存在势必影响后续对影像的分割和理解分析,所以图像去噪是预处理的重要步骤之一。去噪的方法有很多,结合影像特点、噪声的统计特征及频谱分布规律,目前常用均值滤波、中值滤波、低通滤波等算法来对图像进行平滑处理。
(2)图像增强。图像增强是数字图像处理领域中的一个重要分支。影像学上的图像增强和复原的目的是为了提高医学影像的质量,清除干扰、降低噪声,通过增强清晰度、对比度、边缘锐化、伪彩色等来提高影像的质量,或者转换为更适合人观察或机器识别的模式。不同于图像噪声,在图像增强中通常不考虑影像降质的原因,它不需要反应真实的原始图像,只需突出图像中感兴趣的内容。但要对降质的原因有所了解,依据降质的原因建立“降质模型”,然后各种滤波方法和变换手段增强图像中的背景与感兴趣部位的对比度,比如:增加图像高频分量,被照人体组织轮廓变得清晰,细节特征明显;增加低频分量,能有效降低噪声干扰,最终达到增强图像清晰度的目的。图像增强根据空间不同可划分为基于空间域的增强方法和基于频率域的增强方法。
基于空间域的增强方法是对图像中的各个像素的灰度值直接处理,算法有直方图均衡化、直方图规定化等;基于频率域的增强方法不直接处理,而是用傅里叶变换将空间域转换成频率域,在频率域对频谱进行处理,再使用反傅里叶变回到空间域,算法有低通滤波、高通滤波、同态滤波等。
(3)图像配准。图象配准是图象融合的前提是公认难度较大的图象处理技术.也是决定医学图象融合技术发展的关键技术。在临床诊断中,单一模态的图像往往不能提供医生所需要的足够信息.常需将多种模式或同一模式的多次成像通过配准融合来实现感兴趣区的信息互补。在一幅图像上同时表达来自多种成像源的信息.医生就能做出更加准确的诊断或制定出更加合适的治疗方法。医学图像配准包括图像的定位和转换.即通过寻找一种空间变换使两幅图像对应点达到空间位置和解剖结构上的完全一致。要求配准的结构能使两幅图象上所有的解剖点.或至少是所有具有诊断意义以及手术区域的点都达到匹配瑚。二维图像的配准方法.并根据配准基准的特性,将图像配准的方法分为基于外部特征的图象配准有框架和基于图象内部特征的图象配准无框架)两种方法。后者由于其无创性和可回溯性。已成为配准算法的研究中心。近年来医学图像配准技术有了新的进展,在配准方法上应用了信息学的理论和方法,例如应用最大化的互信息量作为配准准则进行图像的配准,基于互信息的弹性形变模型也逐渐成为研究热点。在配准对象方面从二维图像发展到三维多模医学图像的配准。一些新算法,如基于小波变换的算法、统计学参数绘图算法、遗传算法等。在医学图像上的应用也在不断扩展。向快速和准确方面改进算法.使用最优化策略改进图像配准以及对非刚性图像配准的研究是今后医学图像配准技术的发展方向。
(4)图像分割。图像分割是数字图像处理领域的关键技术之一,目的是将图像中有意义、感兴趣的内容从背景里剥离,划分为各个互不交叉的区域。有意义、感兴趣的内容通常是指图像区域、图像边缘等。分割是后续图像理解分析和识别工作的前提和依据。目前已经开发出很多边缘检测和区域分割的算法,但是还没有一个算法对各种图像处理都有效。因此对图像分割的研究还将继续深入,在以后很长一段时间将始终是热门话题。图像分割方法基于灰度值主要划分为基于区域内部灰度相似性的分割和基于区域之间灰度不连续的分割。基于区域内部灰度相似性的分割基于区域内部灰度相似性的分割是确定每个像素的归属区域(同一区域内部像素是相似的),从而形成一个区域图集,来对图像进行分割,常用算法有阈值分割法、形态学分割、区域生长法、分裂合并法等。基于区域之间灰度不连续的分割基于区域之间灰度不连续的分割是指先提取区域边界,再确定边界限定的区域。因为图像中的边缘部分往往是灰度级发生跃变的区域,根据像素灰度级的不连续性,找出点、线、边,最后确定边缘。常用的算法有边缘检测分割法、Hough 变换等。
由于医患交流以及过去医学影像不清晰、保管难等问题,始终制约了精准医疗的发展。目前随着科学技术的进步和互联网技术的突飞猛进,影像学被越来越多的应用到各种疾病的检查中去,医生读片诊病,影像成了医生重要的诊断辅助工具,难以被低估,不能被替代。随之影像学科也成了当今迅速发展起来的一门综合学科,多门课程如通讯、计算机、医疗交叉,为医务工作者提供尽可能准确的辅助诊疗方法,这将是今后影像学科持续发展的重要方面。
参考文献:
[1] 包尚联,孙启玉,谢宜学. 数字医学影像核心装备〔J〕. 医疗装备,2015; 4: 1-6.
[2] 田捷,赵明昌,何晖光. 集成化医学影像算法平台理论与实践〔M〕. 北京: 清华大学出版社,2018.
[3]王向阳. 基于小波变换的有损图像压缩算法研究〔J〕. 计算机工程与应用,2017; 37( 15) : 82.
[4]刘兵全,何继善,李振伟. 医学图像后处理研究进展〔J〕. 国外医学生物医学工程分册, 2016; 27( 4) : 248-53.