陈宇峰
山东洪通集团有限公司,山东 济宁 272000
摘要:随着现代化科学技术的不断发展和进步,我国水利工程项目施工技术在不断进步,在当前水利项目施工工作中,对软土地基施工处理技术的应用愈加广泛。软土地基施工质量与整个水利工程的建筑质量密切相关,其会影响和决定工程项目运行过程中的安全性及稳定性,影响整体水利工程的使用寿命。为了保证施工质量,须制定合理的施工方案,在处理地基之前,应开展软土地基的勘测与分析工作,有效保证整体水利工程工作的顺利开展。
关键词:水利施工;软土地基;处理技术
1水利施工软土地基特点
1.1土质分布不均
软土地基土层结构比较复杂,会有多种成分的土壤混杂,按照土层深度排布,各层之间会有明显的性能差异,土质密度并不均匀,不同土质的承载性有差异,会对地基构造产生不同的影响,如果在施工前未对软土地基加以处理,会导致基础工程的强度不达标,上部水利工程在施工后期会出现不规则塌陷,影响水利工程的质量和安全。
1.2强度较低
水利工程对于水利的使用年限以及质量都有很高的要求,但是由于软土地基自身组成成分特性的限制,含水量较高且结构松软,因而软土地基强度比较低,早期沉降可能不明显,如果出现外力干扰或者在上部荷载的长期持续施压过程中,在地基所承受的压力不断变化的情况下会表现出较高的压缩性,稳定性变差,易发生形变,出现裂缝以及坍塌等事故,特别是在地震等自然灾害期间,安全隐患加大,严重影响水利工程的使用[1]。
1.3透水性差
水利工程的软土地基本身含有淤泥成分,因而含水量较高,还具有一定的黏性,这也导致其透水性非常差,表层水无法向下渗透,地基积水严重,直接影响到软土地基的稳固性和安全性,而且上部水利工程设施与雨水长期接触易受到侵蚀损坏,水利工程的使用性能和寿命降低,因此在进行软土地基处理时需要投入大量的人力和物力来做好排水工作,使得施工时间和成本都有一定的增加。
1.4沉降频率高
水利工程建设周期较长,而软土地基又具有较强的压缩性,部分软土地基在建设之后也一直处于不明显的沉降状态中,此外本身软土地基的强度就较低,土壤承载力有限,随着工程推进,在软土地基上部荷载、外部荷载的共同作用之下,软土地基承受压力不断地增加,将无法承受水利工程建筑结构的自重,沉降速度也会越来越快,当沉降值超出工程安全标准就会出现倾斜、失稳以及坍塌等问题,从而严重影响水利工程的建设质量以及进度,威胁水利工程建筑结构的稳定性。
2水利施工中软土地基处理技术
2.1排水固结法
水利工程出现沉降的频率很高,而此种技术可以改善软土地基稳定性不足问题,缓解地基的快速沉降,对于含水量较大的软土地基应用此种方法可以取得非常明显的效果。该技术的关键在于排水系统和加压系统,鉴于加压方式的多样性又可分为真空预压法和超载预压法、降水预压法等,但都是根据软土地基的透水性差原理来实现对软土地基的排水[2]。第一种加压方式较为常见,通过在软土地基表层铺上一层砂垫层,并埋设排水管道,用封闭薄膜使其与大气隔绝,再利用真空抽气装置形成真空地带,进而提升地基承载性能;第二种方式处理软土地基时的效果显著,但超载预压阀值不好控制;第三种方法与真空预压的薄膜覆盖相似,还要在软黏土上设置砂井、塑料排水,具体要根据工程实际情况和处理要求、经济性等原则综合考虑。
2.2化学固结法
该法的施工投入更多,但处理效果更为突出,一般在其他简便经济性的处理方案没有取得理想的效果后会使用这一方法进行完善,尤其在新型材料不断出现并使用的情况下,将其用于填充改造软土地基,可以明显加强地基稳定性。具体有高压喷浆法、深层搅拌法、灌浆法等,都是通过使用针对性强的化学材料进行软土硬化处理,深层搅拌法是将固化剂融入原土地基中,高压喷射注浆法的原理和灌浆法比较相同分别通过高压气流和气压、液压将浆液注入裂缝中填充,以提升软土地基的承载能力和硬度,明显减少软土地基沉降问题,确保水利施工工程的整体质量。
2.3灌浆处理法
这一方式应用最为普遍,根据灌浆方式可分为渗入型注浆、劈裂灌浆、硅化注浆法、水泥搅拌法,渗入型注浆法比较适合缝隙较多的软土地基,能保证原有的结构不受破坏,劈裂灌浆很难在受力之后保证原来的结构,灌浆范围需扩大,硅化注浆法通过注入硅酸钠为主的混合溶液到地基底部结构凝固形成结石,提升软土地基的强度、密实性以及其实际的承载力,水泥搅拌法是当前水利工程中最常见的一种地基处理方式,以水泥泥浆作为主要的材料,对软土与固化成分进行搅拌,使水泥泥浆与软土生成反应,利用固化后的水泥排除软土层中的水分,对软土结构的使用性能进行改善,提高其稳定性和受压力,从而提升水利工程基础结构的耐久性、安全性[3]。为了确保灌浆法处理效果良好,首先要做好前期勘察工作,并合理选择固化剂,调配好浆液,其次要选择恰当的注浆方式,严格控制灌浆压力和单次注浆量,确保填充均匀密实,突显固化能力,以达到对软土地基物理性质进行有效改善的目的。
2.4换填处理法
换填法操作比较简单,技术性不强,处理成本也较低,往往适用于软土地层较为稀薄的情况,主要是利用综合强度较高的素土、砂石等材料来替换掉原软土地基中的表层中粉质粘土等,进而提升该地块的地基强度。其处理关键点在于换填材料的选择和填层的敷设处理,回填土要选择一些较强透水性、压密性的材料,考虑到施工成本,最好可以就地取材,用最为常见的沙土、灰土与水泥来更换。其次是分层压实施工质量管理,要控制好单次填料的厚度,选择合适的碾压机械进行压实,并及时检验压实度和平整度,根据要求做好地基的夯实处理,确保每一层换填压实质量合格,能够在地基上形成一个较好的持力层,以此来提升原区域地基结构的综合强度。
2.5灰土密桩法
如果地下水位中有较多的黄土和杂填土,便可使用该类方法。通常使用该项技术进行处理,一般深度为3~15m,过深会影响压实的效果。在软土地基中加入灰土桩,再使用锤击将钢管嵌入土层中,使土层中的土体向侧向压实,形成桩孔。此后将管拔出,向桩孔按照2:8或3∶7的比例回填灰土,最后压实,与桩间土形成符合地基,从而共同承受外力的载荷。还可使用沉管或者爆扩等方式完成打孔,实施完毕后再对孔底进行压实,此后使用灰土等原料,在含水量标准的情况下完成回填,此后完成夯实处理[4]。从实践可知,灰土的质量相对较轻,因此其能够以较快的速度渗入到疏松的土层中,从而将其压实到软土地基之后,便可与其他的土层接触形成对孔隙的补充,从而提升地基的强度。
综上所述,有关施工单位应密切关注水利工程项目施工中软土地基的处理工作,制定较完善的施工方案,选择最优的处理技术类型,全面提高水利结构的稳定性以及承载能力。使用科学且合理的施工方式,有效提高软土地基的处理效果,对各个工作环节进行优化,以满足行业的发展需求。
参考文献
[1]王碧,王冬华.水利工程施工中深层搅拌桩技术的应用[J].中外企业家,2019(21):119.
[2]何雄,方铭锋,符芳明.砂桩结合水泥搅拌桩处理软土地基施工工艺探讨[J].广东水利水电,2019(07):31-33+44.
[3]杨华.水利水电施工中筑坝工程的关键工艺探究[J].中华建设,2019(07):132-133.
[4]谢瑞华.水利水电工程建筑中不良地基的影响与处理技术[J].居舍,2019(18):70.