陈立楠
大庆龙唐供热有限公司
摘要:随着国家的发展越来越好,工业的不断进步和发展,热电厂的作用越来越突出,在热电厂能源转换,将大部分能量的动能转化为电能,但能量转换的一部分仍将直接损失,产生的热损失和焓降现象,因此需要进一步探讨如何有效地减少热损失,提高能量转化率。火电工程可以有效地解决这一问题,因此对火电厂进行性能优化势在必行。
关键词:热电厂性能;热能动力工程;应用
引言
近年,随着我国用电需求量的不断增长,热发电厂也迎来了较好的发展机遇,面临着一系列的挑战。热发电厂的工作主要是通过燃烧煤、石油和天然气等材料,来获得一定的热能,然后将这些热能转换为机械能,使其成为设备运行的原动力。一般情况下,可将热能动力装置分为两个部分:一部分是燃烧系统,另一部分则是汽水系统。燃烧系统是在锅炉中燃烧燃料,将水加热转换为蒸汽,汽水系统则是将产生的蒸汽进行冷却,使其成为汽轮机运行的动力,直接将热能转换为机械能。加强对热电厂热能动力工程装置的检修和维护工作,有利于保障热电厂的正常运行,获得更多的经济效益和社会效益。
1热能动力工程简述
热能动力工程即热能和工程间关系下的实体工程。当前,热能动力工程应用范围较广,很多企业都将热能发电机引入到企业供电设备中。另外,还有一些企业将水利电动力工程引入其中,与此同时,还应注意和传统矿物资源相比,水利电动力工程作为相对环保的一种工程,实际造价相对较高。现阶段,国家主要倡导节能环保建设,但水利电动力工程多用在大企业当中。文章提出的锅炉,主要包含热力发电机、热能转换动力机械等技术。热能动力工程无论设计科目,主要研究热能和动力二者间关系,即二者间转换问题,现阶段,热能动力工程多用在热电厂、自动化方向中,未来将在此基础上,解决一些能源应用问题。
2热电厂应用在热能动力工程中的现状
如今,电力主要以火力发电的形式产生,使人们生产和生活中对电力的当前需求最大化。在社会不断发展的过程中,科学技术每天都有新的突破。随着科学技术的进一步发展,社会对发热电厂的应用技术提出了越来越高的要求。因此,在火力发电领域,有必要通过结合现状并提出改善措施,推动发电技术的进步。火力发电是现代锅炉制造过程中最重要的发电设备。使用风机时,风机必须由气流驱动,以在运行期间旋转轴承。在运行过程中,风机叶片可转换轴承的机械能,从而加快气流速度,提高风机的效率。近年来,风机已广泛用于发电厂和锅炉等许多领域。随着科学技术的不断进步,应用智能化技术能够在一定程度上减少能源的消耗。在热能工程锅炉风机的运行中,功耗也很重要,不符合能耗要求的将被淘汰,否则在锅炉风机运行时,会受到电机烧坏、叶片窜动等外部因素的影响,不仅严重影响锅炉的效率,而且威胁工作人员的人身安全。因此,分支机构需要更加关注优化锅炉风机的运行,以实现降低能耗,减少成本和提高工作效率的目标。
3基于热能动力工程优化热电厂性能
3.1基于工况科学选择调配方式
平行运行机组在外界负荷变化与电网频繁变动时,会根据自身差异化动态特性,适度增减负荷以自动运转,进而保持电网周波,此过程便为一次调频,其具有频率调节速度快的特性,然而发电机组因为调整量不同存在一定差异,且调整量相对有限,导致调度人员难以控制。而电力系统负荷与电力变化过大时,一次调频根本无法恢复常规频率,这就需要二次调频。一般二次调频分为自动调频与手动调频,自动调频不仅便捷,且使用范围广泛。在热电厂工作过程中,通过充分了解并网运行机组情况,以选择合适的调配方式,防止由于调配方式失误造成热能动力工程应用效率下降,进而实现设备运行能力有效提升。与此同时,汽轮机工况与焓降变化之间息息相关,在全开第一阀,工况流量增多的情况下,压力会增大,相比焓降,需适度调小调节级,反之则调大调节级。在关闭第二阀,第一阀全开的情况下,相比焓降,调节级需高达最大中间级,此时工况变化,焓降与中间级压力比可始终保持不变,还可为调节实际工况提供有力参考,基于实际需求所获的焓降变化,可基于此调整工况,满足热能动力工程在热电厂性能优化中应用的具体需求。
3.2合理利用机组内节流调节性能
节流调节不存在调节级,所以在第一级时,便可实现全周进汽,而工况变化,各级温度便会降低,负荷适应性良好,同时适用于小容量机组与基本负荷大机组,但是经济性较差,节流损失严重。热电厂日常运转过程中,可利用弗留格尔公式提高热能动力工程利用率,并基于公式应用要求计算相同流量视域下,各级压差与比焓降,以明确零件受力状态与功率,并监控汽轮机流通情况。简言之,在既知流量下,根据运行时组前各级压力公式负荷情况,详细评估流动部分面积变化状态。在引进弗留格尔公式之后,可确保机组内节流调节,以此为热能动力工程在热电厂性能优化中的应用创造良好条件。
3.3全面强化湿气损耗控制
湿气损失是热电厂能耗损失的重要组成部分,有效降低湿气损失,可提高热能动力工程使用效率,确保热电厂正常运行。为防止湿气损失,降低危害,在热电厂运行过程中,需采取科学可行措施加以弥补,即利用去湿装置或附带吸水缝的喷灌,改进优化机组,提高抗冲蚀能力,引进中间再热循环等等。在汽轮机正常工作时,不仅要克服支持轴承与推力轴承的摩擦力,还需及时启动主油泵与调速器,但是这些操作环节也会导致一定能量损失,即机械损失,对此可采用轴流式汽轮机,一侧引进高压蒸汽,一侧排除低压蒸汽,如此便可在无形中形成高压指向低压的闭环,这样一来,就可有效降低能耗,提高热能动力工程使用效率。
3.4炉内燃烧控制技术
锅炉燃烧作为其中主要内容,借助燃烧过程可以有效转变实际能源。燃烧过程可以充分发挥能源效应,以便全面管理燃烧过程,最终将热能动力工程应用效果全面发挥出来。热能动力工程应用期间,可以借助炉内燃烧控制技术,不断提高燃烧效果,促进热能不断转化。在社会快速发展中,传统锅炉技术难以适应当前社会需求,尤其是在能源转换中,工业炉逐渐成为燃料燃烧的关键技术。很多企业都将新设备引入其中,这也使得国内锅炉行业逐渐朝着自动化方向发展。在信息技术的大量使用下,锅炉控制系统实现了对不同方面的掌控。具体而言,主要体现在以下两个方面:(1)空燃比例连续控制体系;该系统控制是以逻辑控制器与比例阀等部分组成。空燃比例连续控制体系可以将锅炉中的燃烧传递至编程逻辑控制器内,接着借助比例阀内的电子信号传输信息,对这一信息进行合理调节,便于对锅炉内温度进行合理控制。但受到科学技术等方面限制,这一系统在实际应用期间,温度控制方面精度仍不准确,仍需要很多技术人员来干预。(2)双交叉先付系统。双交叉先付系统主要是借助温度传感器控制锅炉。系统将会测量锅炉内温度,然后将温度信号传递至逻辑控制器内,接着借助这一装置对空气流量阀程度进行合理调控,然后调整燃料进出口情况,便于精准控制锅炉内部温度。热能动力工程中的锅炉温度应与工程现状相结合,合理应用燃料控制锅炉内温度。因不同燃料差异较大,因此有些完善温度控制相对较淡,有些则反映较为强烈,因而使得温度控制难度逐渐增加,所以锅炉燃料填充前,应先掌握燃料特性,详细对比不同燃烧点情况,最后分析燃烧温度范围与可持续时间,再选择最佳燃料进行生产加工。
结语
在热电厂热能动力工程装置中,应当实施高效的检修和维护工作,以保障热能动力工程装置设备的正常运行,保障整个生产线的顺利展开。这并不是一项简单的工作,需要从多方面来加以把控。要充分认识到热电厂热能动力工程装置检修维护工作的重要性,壮大检修维护队伍力量,引进更多优秀的技术人才,使其全身心地投入工作中,从而促进热能动力工程装置的安全运行,推动电力行业的大力发展,满足人们的用电需求,实现供电目标,提高人们的生活质量。
参考文献
[1]王东东.电厂热能动力工程装置的检修维护策略研究[J].内燃机与配件,2019(9):167-168.
[2]罗强.电厂热能动力工程装置的检修维护策略研究[J].科技创新与应用,2020(16):136.
[3]姚鸿.电厂热能动力工程装置的检修编制标准和维护要点研究[J].中国标准化,2020(22):86,88.
[4]张瑞利.热能动力工程在锅炉和能源方面的发展状况分析[J].能源与节能,2020(06):182-183.
[5]张书锋.热能动力工程在电厂锅炉中的运用分析[J].化工管理,2019(35):220-221.