火电厂中热能与动力工程的改进方向

发表时间:2020/11/23   来源:《基层建设》2020年第22期   作者:潘金良
[导读] 摘要:随着国民经济的发展是越来越好,限制和影响所产生的热能和电力工程也逐渐显现,尤其是作为一个发电厂,锅炉运行的关键,在能耗问题日益严重的背景下,如果不能获得科学、有效的改革和创新,我国的整体发展是非常不利的。
        黑龙江宏通热力有限公司生物质热电分公司  黑龙江哈尔滨  150025
        摘要:随着国民经济的发展是越来越好,限制和影响所产生的热能和电力工程也逐渐显现,尤其是作为一个发电厂,锅炉运行的关键,在能耗问题日益严重的背景下,如果不能获得科学、有效的改革和创新,我国的整体发展是非常不利的。基于此,结合实际情况创新并优化热能与动力工程非常必要,其不仅能促进能源利用率的有效提升,还能全面增强热能与动力工程的实际效果,在为电热厂与锅炉厂等相关行业领域的良好发展提供更大推动力量的同时,为我国综合实力的进一步提升奠定基础。
        关键词:火电厂;热能;动力工程;改进方向
        引言
        当前,可再生资源不断减少,火电厂生产面临较大的资源压力。与此同时,伴随社会经济的快速发展,生产、生活用电需求量不断增加。面对这一局面,在利用热能动力系统发电的过程中,火电厂要引入先进技术进行系统优化和改造,提高能量转化利用效率,减轻资源利用压力,满足节能生产需求。因此,要加强系统优化与节能改造研究,以科学技术为支撑,推动发电事业的健康发展。
        1热能与动力工程概述
        热能与动力工程最重要的理论基础是工程热物理学,其通常以内燃机与其他新型动力机械为主要研究对象,研究人员通过对机械工程学、工程力学、环境科学、信息技术、自动技术以及微电子技术等专业知识的有效利用,探索如何采用安全、高效、无污染或低污染的方式将燃料的化学能与液体动能转换为动力,实际上是包括基本规律和转换过程设备与系统的自动控制技术。简单来讲,热能与动力工程的主要作用在于将热能转化为动能,或通过将动能转化为热能,实现高效利用能源的目的,使2种能量在形式不同的情况下共同转化,有效促进生产的多样化。热能与动力目前发展的主要目标是在确保能源充分利用的基础上,提高产业的经济效益与社会效益,进一步促进我国更快、更好的发展。站在专业构成的角度上来看,热能与动力工程的解释更倾向于热能与动能的应用,在转化与利用热能的过程中,除需对其展开有效控制之外,对新能源的开发以及对现有能源的节约利用也必须得到重视,这都是热能与动力工程的关键构成;内燃机与驱动系统是其中的重中之重,也是热能向动能转化的核心。现如今,热能与动力工程在社会运行各个方面的应用越来越广泛,为使热能与动力工程能够为国家与人民提供更多的便利,相关人员必须在现有的良好基础上及时创新。
        2火电厂热能动力系统优化与节能改造技术措施
        2.1联产技术应用
        (1)系统建设。采用物理化学方法实现联产,能够使煤炭资源得到清洁、高效利用。将煤气化当成中心,能够将95%的煤转化为可燃合成气,实现联合循环发电。具体来讲,增设反应器,将煤炭制作成化工产品,然后利用剩余尾气进行燃烧发电,将发电和化工生产耦合,保证气化系统稳定运行,降低系统发电成本。不同于对系统设备进行单独改造,联产技术需要实现系统联合优化,具有整体性和系统性。蒸汽动力联产需要保证燃气轮机锅炉机组和汽轮机高压系统联合运行,构成新型联产系统。系统运行需要实现耦合共生,保证各种设备相互协调,实现废气资源化处理,促使系统获得的经济效益与环境效益相协调。在重新组合的基础上,原本热能动力系统得到简化,原料要求随之降低,能够通过不同工艺互补提高系统总体运行效率。(2)供热调节。在燃煤过程中,系统供热时容易出现热力平衡差,存在流量大、温差小的问题。为加强蒸汽过热度控制,人们需要将供热蒸汽热量传送至系统,实现热度转化。为使供热系统达到平衡,减少热量损失,还要对热力管网进行改造,在完成采暖地沟敷设的同时,在部分区域新建地沟进行循环输泵改造。

通过安装水泵变频器,加强供热系统计量,人们能够对系统进行变流量控制,结合设备负荷曲线对温度进行设定,促使水温得到有效控制。采暖供热方面,设置恒温阀进行调节,使温度维持稳定。应用热能动力系统供热,运行温度变化也将引起能源损耗,要结合设备实际带负载情况进行控制阀调节,对控制单元输出信号进行控制。通过动力操作,调节介质的压力、流量等,使系统维持可靠运行。结合火电厂建设经验,通常上半年将进行单阀运行,下半年采用顺序阀进行系统运行调整,使系统保持最佳运行状态,提高系统能源利用率。
        2.2补水技术应用
        在蒸汽机组运行的过程中,要采取抽凝式补水方式不断提供水资源,保证系统设备正常运转。系统冷凝器用于使汽轮机出口维持真空,提高汽轮机功率。而在冷凝器位置安装补水雾化装置,能够使排汽余热得到充分利用,在减少冷源损失的同时,提高机组热能的经济性。对系统进行节能改造,可以通过化学补水方式提高设备运行效果。具体来讲,就是在除氧器或凝结器中补加化学水,使排气废热得到回收利用,改善凝结器真空状态,节约能源。该技术需要加强水温控制。在补水不足时,利用余热装置提升水温,使水快速进入凝结器。采取喷雾式方式,利用低压加热器对补水进行逐级加热,能够增强补水效果,使高位能蒸汽量得到有效控制,满足系统节能改造要求。此外,蒸汽机组运行期间将产生湿气损失,还要配备除湿设施降低能源损耗。采用中间热循环方法,在高效除湿的同时,能够提高机组设施抗腐蚀能力。在喷灌时,要设置吸水缝,有效控制损失,继而提高系统运行效率。
        2.3余热回收
        系统节能改造方面,可以采用余热回收技术。通过对系统发电过程展开分析,人们可以发现余热回收利用率较低,系统产生的过多余热将伴随烟气、排污水等物质散失。从节能减排角度来看,要加强烟气回收利用。目前,锅炉发电排烟温度通常能够达到200℃,回收潜力较高,烟气热量回收利用能够有效节省能源。实践应用期间,可以采用预热和助燃两种回收利用方式,前者直接利用烟气对工件进行预热,但容易受到场地限制。而采用烟气对空气进行预热,能够起到助燃效果,增加锅炉热量,提高燃烧效果。提升预热器入口位置的空气温度,能够使换热面壁温升高,避免出现结露腐蚀问题。采用管式换热器时,可以采用水平方式放置管子,使烟气恒流冲刷换热面,减少低温腐蚀。针对尾部换热器,壁温应比烟气露点温度稍高,避免露点腐蚀发生。实际进行系统节能改造时,要在锅炉尾部完成低压省煤器的安装,装置靠近引水位置,促使烟气余热得到较好收集,投入热力循环,有效减少能源消耗。对排污水余热进行回收利用时,应结合系统定期排污特点进行节能改造。系统经过扩容减压后,废水将直接排放,导致余热浪费。如进行连续排污,仅能利用扩容器实现少量二次蒸汽回收,同样会造成余热浪费。为此,还要在锅炉上完成余热回收装置安装,对污水余热进行回收,使系统热量得到充分利用。该装置可以利用温度低的水对烟气进行冷却,将烟气温度降低至水蒸气冷凝水平,对烟气显热和冷凝潜热进行回收利用,提升锅炉热效率。
        结语
        综上所述,随着社会工业的生产发展,人们的用电需求不断增加,火力发电厂是为人们提供电力的重要关键。但是在火电厂热能动力装置使用的过程中受到内外部因素的影响会出现一系列的系统故障问题,这些故障问题严重危害了火电厂热能动力装置的使用。在这样的情况下需要相关人员通过学习掌握更多的火电厂热能动力装置检修维护经验,并采取有效的措施预防和解决装置应用故障问题,进而为火电厂的稳定运行提供重要支持。
        参考文献:
        [1]徐涛.火电厂热能动力装置的检修维护策略研究[J].现代农业研究,2020(7):114-115.
        [2]罗强.电厂热能动力工程装置的检修维护策略研究[J].科技创新与应用,2020(16):136.
        [3]程岩.火电厂热能动力装置的检修及有效维护[J].电力系统装备,2020(3):123-124.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: