武汉市华源兴盛电力有限公司新洲华光分公司 湖北省武汉市 420014
摘要:在城镇化进程日趋加快的当前社会,许多工程项目数量不断增多,程序相对繁琐,使得建筑物的高度也在时代发展和行业发展的背景之下不断的增加。高层建筑物的施工难度相较低层建筑物要大了许多,并且在现场施工的过程当中,每一层和每一个环节的施工都直接影响到整栋建筑的整体质量,无法保证地基施工的质量,就直接给整个建筑物带来毁灭性的打击。因此,对于高层建筑物来说,具有着坚实的地基基础,维持基坑的牢固性,是后续施工得以安全实施的前提。
关键词:建筑工程;深基坑支护;施工技术;应用
1深基坑支护施工面临的问题
1.1基坑深度不断加大
近年来,我国城市化建设步伐不断加快,房屋建筑、路桥等基础设施建设项目的数量越来越多,导致土地资源大规模减小。为实现对有限的土地资源的高效利用,目前建筑工程领域越来越重视对地下空间的开发,导致建筑工程基坑深度越来越大,从而提高了对深基坑支护施工技术的要求,深基坑支护施工的难度也不断增大。同时,高层建筑也是建筑行业针对土地资源短缺问题所采取的有效举措,高层建筑通常体量较大,也给深基坑支护施工技术提出了更高的要求。
1.2影响因素较多
目前,我国十分重视深基坑支护工作,工程建设也取得了较大的发展,但依然存在基坑失稳的问题,且失稳率在3成以上。出现该问题的原因具有多样性,如前期工程勘察方案不完善,或者只针对拟建物进行勘察,而没有对基坑支护进行专项勘察,导致岩土数据不可靠,工程施工设计不合理;另外,施工监管不力和工程施工不规范等。
1.3施工条件比较复杂
当前,建筑工程的数量不断增多,但建筑用地却在日趋减少。在此背景下,很多建筑企业在进行选址时,往往不得不选择环境相对复杂的地方,这些地方地下管线复杂、管道较多,导致深基坑支护施工难度较大,对支护施工技术也提出了更高的要求。深基坑支护施工之前,如果没有准确、全面地掌握该区域的地质条件、周围环境等情况,便有可能出现深基坑开挖不成功的现象,导致大量资源的不必要浪费,还会影响深基坑的稳定性,甚至给周围建筑物及构筑物造成严重的威胁。
2建筑工程中深基坑支护施工关键技术
2.1应做好施工前的准备工作
在开展深基坑支护施工操作之前,应当做好相应的准备工作,包括对支护施工现场的各项因素进行排查,对支护现场的各项尺寸进行科学合理的测量与记录工作,然后再通过对于深基坑支护施工之前相关工序的了解,做好对管理人员以及施工人员工作的科学分配。管理人员需要全面对现场进行分析,对有关的资料进行收集和记录,检查深基坑支护现场的实际情况。对于各项施工管道、管线的质量进行排查细化。勘察报告内的各项尺寸和数据内容。然后在施工的过程当中,施工人员需要拥有一定的施工经验,要能够按照施工的图纸完成施工方案。确保施工人员的施工操作能够尽可能的规范标准,并且按照施工的计划完成施工工期内的施工任务。如果出现各种突发情况,要与设计人员或管理人员进行良好沟通,协商解决出现故障和问题的各项情况,尽快的排查并找到解决的方案,从而保证施工的工期以及整体施工的质量。
2.2土钉墙支护技术
土钉墙支护技术应用中,先利用土钉做好土体的加固处理,之后利用钢筋网和混凝土面板完成支护结构与边坡结构的有效衔接,进而达到加固效果。土钉墙支护技术具有结构稳定性好、强度高等特征,在目前高层建筑或地下建筑深基坑支护中得到广泛应用。存在的弊端主要是单一土钉墙支护深度有限制,为进一步改进支护效果,往往会将其与水泥土桩、微型桩、预应力锚杆等技术融合起来共同使用,以加强深基坑支护施工效果,降低施工难度,缩短工期,节省更多的资金成本。
土钉墙支护技术最常被应用在2-3级非软土场地内,基坑深度可达到12米左右。在土钉墙支护技术应用中,需要重点注意的内容有:注浆工艺、土钉拉拔、混凝土喷射等技术,全面维护各项参数指标的合理性、科学性,更好的提升土钉锚固效果,从而优化深基坑支护方案,增强基坑周边结构稳定性和安全性。
2.3土层锚杆
建筑工程深基坑施工中,土层锚杆也是一种常用的支护方式。实际应用土层锚杆进行支护时,应对锚杆的位置进行合理选择,使用钻机对锚杆进行固定后再灌浆。钻孔前,将锚杆位置当作基点,认真测量,锚杆机位于指定地点后才能进行钻孔,并合理调整钻杆的位置、钻杆的角度。钻孔过程中,若发现异物,则要停止钻孔,立即上报,并要仔细探查,根据探查结果,再确定解决对策,到达指定位置后完成钻孔。同时,也要仔细检查锚索的情况,确保锚索状态良好后,才能开展相关操作。
2.4排桩支护技术
排桩支护技术的应用形式有连续排桩支护、柱列式排桩支护、水泥搅拌桩支护和密排钻孔桩支护这四种,该技术的灵活性和适应性强,在很多软土地区深基坑施工中均得到广泛应用。连续排桩支护在应用中需要配合注浆防水处理,以提高支护效果,维护深基坑施工的稳定性和安全性。柱列式排桩支护方式一般应用在深基坑周边土质好,水位线较低的区域内,施工中注意桩孔设置的合理性,科学规划桩孔直径尺寸、间隔距离和深度。水泥搅拌桩支护与柱列式排桩支护相反,应用在土质较为松软,水位较高区域内,且施工中要做好防水处理,科学设置挡土结构,避免出行质量问题。密排钻孔桩支护施工中,深基坑深度越大,排列密度也就越大,相应的施工中所需的支撑设备也就越多。
2.5组合支护
组合支护指将多种支护方式与相关技术有机结合起来。喷锚支护便是深基坑施工中的一种常用组合支护方式,其是将混凝土喷射、锚杆、钉墙、铁丝网等有机结合起来,适用于地下水位较低以及黏土、砂土、弱胶土等特殊土体的基坑支护施工。实际应用喷锚支护方式时,基坑深度应≤15m,并要做好准备工作,从而确保喷锚支护施工质量。同时,桩锚支护也是深基坑施工中的常用组合支护方式之一,其在土体性能较好、土层较薄、土质较软的地基中有着良好的应用效果。例如,基坑坑体长度≤40m、设计轴向抗拔力≤750kN、水平角度为20°~50°时,便可以应用桩锚支护方式。桩锚支护方式的构造形式相对简单,是在基坑稳定地层内将受拉杆件的一端固定住,然后使其另一端连接围护桩,从而通过围护桩来对力进行传导,以保证围护结构的稳定性。实际应用桩锚支护方式时,应做好实地勘测,将垂直、水平位置标注好,并对支护结构、基坑底部间的夹角进行严格控制,确保其不超出20°~25°的范围。如果基坑单边长>40m或边缘总长>140m,则要严格控制锚杆轴向抗拔力,通常不可超出700~800kN的范围。此外,自立式支护也是深基坑施工中的常见组合支护方式,其适用于素填土、粉土、粒土、黏土以及淤泥土等土体,主要是设置具有阻挡、支护等效果的水泥搅拌桩,并将其当作支护屏障。实际应用自立式支护方式时,需要严格控制基坑挖掘深度,深度应≤9m。
结论
由于高耸建筑的不断出现,深大基坑越来越多,对深基坑支护的要求越来越高,在保证安全的前提下,承建方越来越对减小成本、缩减工期、提高与施工衔接度有了更高的期待。这就要求我们在考虑到基坑支护工程复杂性的同时,不断探索新的支护形式,新的支护材料和新的支护设计理论,为更多、更高、更大的标志性建筑顺利拔地而起做好我们岩土工程工作者。
参考文献:
[1]方东辉.深基坑支护技术在建筑工程施工中的应用分析[J].中小企业管理与科技(上旬刊),2018(01):170-171.
[2]陆子念.深基坑支护技术在建筑工程施工中的应用[J].工程技术研究,2018(003):41-42.[3]曹振.分析建筑工程施工中深基坑支护技术的应用要点[J].建筑发展,2020(2):38-39.
[4]孟常青.试析深基坑支护施工技术在建筑工程中的应用[J].建筑与装饰,2020(009):139-140.