李雨辰
福建福清核电有限公司 福建省福清市 350318
摘要:本文简述了核岛设备冷却水在运行过程中出现的泄漏情况,比较了核岛设备冷却水缓蚀剂改造前后的水质要求及实际运行情况,分析了其运行过程中冷却盘管泄漏的原因。根据泄漏原因,给出了三点针对性的改进措施:更换冷却盘管材质;提高核岛设备冷却水中的铜及铜合金缓蚀剂量;严格控制亚硝酸钠的质量,避免杂质CL离子进入。采取以上改进措施后,在随后的几个燃料循环过程中未发现有任何泄漏,取得了非常好的效果。
关键词:核岛设备冷却水;冷却盘管;缓蚀剂;
前言
核电站是我国经济的重要组成部分,冷却水系统则是促进设备正常运行的关键。基于这一点,企业应重视核岛设备冷却水系统的水质控制,尤其是针对腐蚀和结垢。核岛设备运行复杂,冷却水系统的水质问题始终是我们重点探讨的问题,文章从这一角度出发,对该问题进行细致的分析。
一、RRI水质要求
1.RRI根据初始设计,采用磷酸盐作为缓蚀剂控制水质,但实际运行中发现磷酸盐缓蚀剂的缓蚀效果不理想,铁、铜等离子有超标现象(含量1ppm左右),为了避免结垢而影响热交换器效率并防止腐蚀等现象,需要经常换水以满足水质控制的需要,同时WANO评估AFI(待改进项)中也指出采用磷酸盐体系,从缓蚀机理并不适用于除盐水系统,建议将磷酸盐缓蚀剂更换成其它更合适的缓蚀剂。为改善核岛设备冷却水水质,在参照国外核电厂的经验的基础上,RRI使用亚硝酸盐类N8338缓蚀剂替代原设计中的磷酸盐,在经核安全局批准后,电站首先对1号机组设备冷却水进行了缓蚀剂的更换。
2.更换后1号机组RRI设冷水中的铁和铜离子含量均下降后处于稳定值,一年后铜离子下降到100—200ppb之间。次年,机组也完成了缓蚀剂的更换工作。更换成新的缓蚀剂后,系统中铁含量明显降低后保持稳定(500ppb以下),铜含量也明显下降(100-500ppb),但同时化学分析发现氯离子含量超标(最高1.6ppm),直到RRI水进行换水,并重新添加新的合格缓蚀剂后,RRI水质才处于正常。RRI原设计上采用的是传统的磷酸三钠缓蚀剂,磷酸三钠在密闭系统只是作为pH的缓冲调节剂,利用高pH值使钢铁自然钝化形成的保护膜起到防腐的作用,但在除盐水体系中没有氧化膜或沉淀膜形成,所以无法有效控制氧腐蚀,同时对铜和铜合金没有保护作用。
3.RRI新更换的亚硝酸钠N8338缓蚀剂为氧化型缓蚀剂,是闭式水系统使用最广泛的缓蚀剂(美国电力科学研究院EPRI2004版闭式水化学导则),能形成致密稳定的钝化膜,阻止可能的氧腐蚀,及其他离子的电位浓差腐蚀,但其同时会产生氨,对铜材料特别是黄铜(海军铜等)存在的潜在应力腐蚀侵害风险。N8338缓蚀剂主要化学成份如下∶亚硝酸钠10.0-30.0%,氢氧化钠0.1-1.0%,甲基苯并三氮唑(TTA)1.0-5.0%。其中亚硝酸钠作为钢铁缓蚀剂,TA作为铜及铜合金缓蚀剂,氢氧化钠调整RRI的pH值。铜及铜合金缓蚀剂TTA的中文名称为"甲基苯并三氮唑",分子式CH,CHN,H,为含氮有机类缓蚀剂,是铜及铜合金非常有效的缓蚀剂。它通过化学吸附作用,在铜表面生成具有保护作用的膜,这层膜具有高的疏水性以及不溶解性,可以在较宽的温度范围和pH值范围内对铜及铜合金起到良好的缓蚀效果,广泛应用在工业闭式冷却水系统中。
二、核岛冷却水系统水质问题分析
1.结垢
结垢的主要因素是循环水在长期使用中出现的水变质而导致的过饱和,水中会有大量的晶核析出。当晶核足够大时就会吸附于换热器的表面,其中主要影响因素包括水温、水流速、水质和换热的温差。具体过程为∶循环水运行过程中,会吸收一定的热量而出现挥发,使微生物的浓度提高,这样其吸附能力和结垢可能性提高。另外,在补充水时,水质盐碱度、硬度以及pH值,都对循环水的饱和状态具有一定的影响,并且pH值越高,系统循环水就越容易饱和,越容易结垢。组成核岛设备冷却水水垢的主要成分是由碳酸钙、碳酸镁等微溶解度盐组成,这是由于这部分盐的溶解度会随着水温的升高而降低。水垢的附着率与循环水的流速呈反向相关,通常水流速越慢,越容易沉淀和结垢。水流速度足够快时,对污垢具有一定的冲击力,减缓其附着能力。
2.腐蚀
核岛设备冷却水腐蚀主要分为化学腐蚀和电化学腐蚀两种。判断其是否发生腐蚀可以通过测试水的监督、硬度或者浊度来完成,腐蚀主要分为点蚀、溶解氧腐蚀和微生物腐蚀等。点蚀是由于天然水中所含的氯离子,该离子为阴性并且具体较高的极性,能够介质穿透金属表明的预制膜,从而造成点蚀。点蚀严重的地区通常都为死角或者通道具有较大的变化的情况,温度对氯离子具体较大的诱惑作用,温度是化学反应的重要因素,当水中含有氯离子,则温度将影响腐蚀,并且呈正相关。也就是温度越低,腐蚀的程度越低,高温则会增加设备被腐蚀的概率。
三、冷却盘管泄漏原因分析及解决措施
1.材料本身对应力腐蚀开裂敏感
原设计要求上充泵房应急通风系统和控制棒驱动机构通风系统冷却盘管的材料耐磷酸三钠腐蚀,针对此要求制造商和设计单位选用了锡黄铜HSn70-1(俗称海军黄铜),而锡黄铜为的含锌量在30%左右,其表面生成的氧化亚铜膜不稳定,易氧化,特别是在氨性环境中对应力腐蚀破裂非常敏感。
2.残留应力过大
根据GB/T8890-1998"黄铜管的验收技术条件"规定,黄铜管应消除内应力。采用标准GB/T10567.2-2007"铜及铜合金加工材残余应力检验方法——氨薰试验法",对铜管内部的残余应力进行了测试,裂纹上存在明显的分叉现象。表明冷却盘管内部存在一定的残余应力。该应力可能来自于铜管的生产,也可能来自于弯管与直管的胀接过程。
3.TTA浓度过低且亚硝酸钠会产生一定量的腐蚀性介质氨
在闭式冷却水系统中应用TTA作为铜缓蚀剂时,其含量一般控制在5—100ppm范围内。运行初期N8338缓蚀剂中的TTA的控制值是按照厂家的推荐值控制在1.0ppm左右,与EPRI的建议相比控制值过低。同时是在使用磷酸三钠的基础上改进的,当时使用磷酸三钠时,系统中的铜离子含量就较高,说明系统中一直存在腐蚀。在亚硝酸盐作为缓蚀剂的闭式冷却水系统中可能生成氨,溶于水后形成氨水。化学分析结果表明RRI水中有一定量的NHas离子,这些氨根离子是由亚硝酸盐产生的。
4.冷却盘管失效综合分析
综上分析,冷却盘管具备了发生应力腐蚀开裂的材料因素、应力因素和环境因素,结合黄铜管开裂性质的诊断结果可以推断,黄铜管的开裂是由于亚硝酸盐生成的氨引起的应力腐蚀造成的。其发生过程推理如下∶使用磷酸三钠作为缓蚀剂时,由于没有添加防止铜和铜合金腐蚀的铜缓,铜和铜合金的耐腐蚀性是靠其表面初始生成的Cu,O和CuO氧化膜,在改用新的N8338缓蚀剂后,铜和铜合金的耐腐蚀性是靠添加的TTA铜缓和铜管表面的铜离子络合并吸附在铜管表面上形成的表面膜来防腐的,该膜主要是在铜管原有的Cu,O膜上生成的。
5.措施
RRI的可用性直接影响核安全,在短短一周左右时间共计发现五台RRI冷却盘管泄漏。根据以上分析,存在共模诱因,立即采取了以下改进措施∶更换破损的换热盘管,盘管材料由原先的锡黄铜改为紫铜管;N8338缓蚀剂中TTA的含量由现在的1.0ppm提高到10-20ppm;严格控制亚硝酸钠的质量,避免杂质CL离子进入系统,如在热交换器RRIO01/002003/004RF因泄漏隔离检修后,恢复运行前要对热交换器充分清洗,隔离检修后取样结果∶氯离子含量3500ppm,远远高于系统氯离子控制值150ppb)。采取以上改进措施后,在随后的几个燃料循环过程中未发现有任何泄漏,取得了非常好的效果。
结束语
综上,核电厂是我国主要的发电方式之一,冷却水系统的水质对其发电效果具有一定的影响。在核电工程中,冷却水系统负责为发热装置提供冷却水。因此,在整个过程中,保持冷却水系统完好是主要任务之一,在实际生产中,应认真观察水质,加强日常监测。
参考文献:
[1]蒋大东.核岛设备冷却水系统水质控制措施优化[J].科技世界,2016,(13).
[2]秦建华.秦山第二核电厂闭式冷却水系统氯离子控制规范的建立[J].核电工业,2015,(8).