(内蒙古自治区大唐乌拉特后旗新能源有限公司 010050)
摘要:风力发电是将风的势能转化为电能的发电形式,较燃煤发电更为绿色环保,应得到大力推广。但是,我国目前风力发电技术相较于德国等风力发电强国还有很大的差距,在风电并网方面会因为谐波而降低系统容量,并使设备加速老化,甚至影响发电安全。另外,还会产生并网闪变问题,导致终端用电设备发生异常甚至损坏电器。目前,只有解决谐波和闪变并网问题,同时,加强电网调峰能力、和智能电网建设并提高电能消纳水平,才能确保风力发电得到充分利用,发挥绿色能源的作用。
关键词:风力发电;并网技术;电能质量;控制措施
风力发电为我国电能做了很大的贡献,是其主要来源之一。但是,风力发电厂的容量也随着时代的进步不断增加,这对电网系统的整体产生了一定的影响。风力发电厂位置区域通常离供电网络的中心处较远,大多数会位于人口数量不多的区域,所以承受的冲击力不会过大。但是对风力发电技术进行使用的过程中或许会导致配电网产生闪变或谐波污染等情况,并且风力发电过程中也有可能受到发电随机性的影响。因此,如何利用风力发电并网技术进行电能质量的控制也成为当下各企业关注的方面。
1风力发电并网技术
风力发电已经成为电能产业不可缺少的能源,风力发电的并网技术的研究对提高风能发电效率具有十分重要的作用。并网技术在风能发电中的应用可以提高电能的稳定性以及用电的效率。并网技术的核心应用原理是维持风力发电机组的电压与接入电压现阶段,我国电能产业使用的并网技术有很多种,使用最广泛的技术主要有两种,分别是:同步风力发电机组并网技术以及异步风力发电机组并网技术,接下来,我们对这两种技术展开讨论:
1.1同步风力发电机组并网技术
第一种是同步风力发电机组并网技术,这类技术的应用原理是可以将风力发电机组与同步发电机组进行有效的融合,在确保工作正常进行的情况下,提高风电发电的性能,通过对有关的资料进行调查,我们可以知道,同步风力发电机组的并网技术可以提高对风能的利用率,提高风能在发电机组中的应用效率。现阶段,市场上对同步风力发电机组的并网技术的使用范围较为广泛,这项技术在风能行业中的使用可以最大程度的提高发电的容量,带动相关的设备工作。除此之外,风速过大会导致发电机组产生过大的波动情况,影响机组的正常工作。为了提高相关工作的效率,技术人员应该将机组之间进行结合,分析电网以及发电机组之间的关系,最大程度的提高电网发电的质量。
1.2异步风力发电机组并网技术
风力发电并网另一方面是风力发电动力组与异步发电动力组之间的相互融合与运转。与同步发电动力组相比,异步发电动力组更具有随意性,并没有太多设置条件进行限制,且不注重精度的准确性,只要转子在进行运转工作中运转速度不要相差太大。但是,异步风力发电动力组与风力发电动力组之间的结合也会遇到困难,如二者之间的并网,因为,若二者直接进行并网会产生电压下降、冲击电流过大的现象,造成整个发电系统的运转困难。因此,可以通过对相关部门人员的积极调动,使其加强严密监管工作,来实现风力发电系统的正常运行,从而使危险事故的发生率得到有效降低。
2风电并网供电可靠性影响因素
2.1谐波影响
风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,会影响电网的电能质量,如电压偏差、电压波动和闪变、谐波以及周期性电压脉动等。风力发电引起电压波动和闪变的根本原因是并网风电机组输出功率的波动。电网电压的变化受风电系统有功和无功功率的影响。风电机组输出的有功功率主要依赖于风速;在无功功率方面,恒速风电机组吸收的无功功率随有功功率波动而波动,双馈电机一般采用恒功率因数控制方式,因而无功功率波动较小。
2.2频率稳定研究
风电出力波动一般较大,当其与其它发电方式组成一个小型的孤立电网时,可能会对孤立系统的频率造成较大影响。但在现在的电力系统中,大型电网具有足够的备用容量和调节能力,一般不必考虑风电接入引起的频率稳定性问题。目前的研究结果表明,风电接入系统后对系统频率的影响十分有限。
3提高风电并网电能质量控制的有效措施
3.1强化并网管理
针对风电并网工作,要建立风电信息统计分析平台,为公司和政府提供信息服务。建立风电信息统计分析平台,形成涵盖风电规划、前期、建设、并网、运行等全过程的信息数据库,为公司及政府部门提供准确、及时、公开、透明的风电信息服务。加强风电接入系统工程管理,保证风电并网送出。按照相关要求,做好风电接入系统管理工作。对于大型风电基地项目,提前开展风电场接入系统和送出工程前期工作;对于地方核准的风电项目,强化年度计划管理。要重点加强风电并网管理,加快研究制定并网检测等配套规定,建立强制性入网认证和并网检测制度。加快风电并网检测能力建设,增加测试设备,建设测试人才队伍,适应大规模并网检测需求。通过进一步加强风电运行管理,加快风电功率预测功能建设、风电调度计划管理,加快建立风电场计划申报考核机制。
3.2优化机组设计
对于风力发电来说,除了要关注设备本身的问题,更要注意的是把发电厂中的风力发电机组、输电线路、SVG 以及变电设备等各个环节连接在一起。虽然每一个设备都是一个整体,但是对于发电企业来说,每一个设备只是整体中的一环。我们要从设备的可靠性和整个系统的可靠性出发,将技术和管理两个层面连接在一起,从整体方面考虑如何做到电能质量的有效控制。
3.3改善电网调峰能力
每个地区的用电水平不同,而且同一个地区的用电水平也会因为季节不同而发生差异,这需要电网具有灵活的调峰能力。而调峰机制中能否顺畅地接入风力发电机组缓解火电供给不足,成为现阶段阻碍风电并网的一个因素。纵观我国现阶段电网调峰能力,与德国等发达国家相比还有很大的距离。风力发电反调峰作用具体指的是其功率输出是不确定的,主要是受风力以及季节影响非常明显。所以,必须建立智能化系统对用电峰值进行动态监测,并结合风力发电具体参数,使风电和电网形成动态匹配,是确保风电并网供电质量可靠性的有效手段。
3.4提高专业能力
电力企业可以针对风电并网工作加强相关技术人员的技术培训,定期组织专业知识的培训,从而提高技术人员的专业素养,不断的提升整体风力发电网络的服务质量。电力企业可以针对风机叶片结构、故障诊断、损伤维修以及运行维护等方面开展培训工作,安排相关技术人员就严重叶片缺陷的识别,分类分级和缺陷修复建议等问题进行深入的探讨和学习。风力发电企业要继续加强技术交流和业务培训,推进风力发电技术的创新和应用,不断的提高风力发电变电技术及电能质量的控制,为电力生产的运行和维护提供有力的技术支持。
结语
尽管电力技术已经能够使电力质量大幅提升,推动我国风电的技术进步,我国风电并网技术依旧不够完善,风力发电缺乏普适性,无法完全应用在全部风电企业中,我国的风力资源十分丰富,风力发电是研究方向首选的发电研究技术,需要各个发电企业共同推进风电技术能力,促进我国的风力发电技术发展。
参考文献
[1]周利鹏.风力发电并网技术及电能质量控制措施探讨[J].科技创新导报,2018,15(36):70-71.
[2]梁佳斌.风力发电并网技术及电能质量控制对策分析[J].电工技术,2018(12):69-70.
[3]林静,蒋雷.风力发电并网技术及电能质量控制策略[J].通讯世界,2018(05):241-242.
[4]吕昶.风力发电并网技术及电能质量控制措施探讨[J].科技视界,2017(28):131+139.