摘要:随着计算机水平的不断提升和电力系统继电保护领域中广泛的应用计算机,逐渐研究出新的控制原理和方法,同时在继电保护领域中的应用力度不断加强,如专家系统等的应用,其对继电保护的发展具有重要的推动作用。所以具体研究电力系统继电保护中人工智能技术的应用具有重要的现实意义。
关键词:人工智能技术;电力系统;继电保护;应用
实际工作中,电力系统的运行过程常常会受到很多因素的干扰,使得整个电力系统运行时容易出现震荡、超过负荷等非正常状态,而造成设备故障及突然停电等突发状况。人工智能技术可以有效地起到提高保护的智能化水平的作用,能够最大限度地减少因超负荷运载等问题而造成的突发事故的发生,因此为了能够在电力系统出现故障时及时切除故障,应在电力系统继续保护中科学地运用人工智能技术,从而促使我国的电力行业进一步持续稳定地发展。
一、电力系统继电保护的应用现状
电力系统继电保护的应用现状为:第一,时代的进步与发展电力系统继电保护装置也变得多样性,而保护装置的选择会直接影响继电保护工作能否顺利进行,所以相关作业人员在选择保护装置的时候应选择功能齐全且具有灵活可靠性的装置,进一步确保电力系统继电保护工作能够高效有序进行。其次,随着电力系统的快速发展对继电保护功能的需求也逐渐增大,就当前继电保护功能来看主要有以下几个功能,比如,线路保护功能、电容器保护功能以及主变保护功能等,这些功能电力系统继电保护中发挥着巨大作用。此外,要想提高继电保护技术还应将其与现代化技术融合,例如,将网络技术、计算机技术等继电保护技术相互融合,进而实现提高电力系统继电保护的工作效率和水平。
二、人工智能技术在电力系统继电保护中的应用
(一)专家系统的应用
专家系统在电力系统继电保护中主要运用于电力系统的故障诊断及勘测等对时间没有太高要求的保护工作中。专家系统将人工智能从之前的纯理论性的研究转向了在实际工作中得以运用,是人工智能的一项重大突破。而无论专家系统在何种系统中得以运用都能够有效地达到使继电保护工作的工作效率得以提高的目的。专家系统在继电保护中的工作原理,就是先将有关专家在电力系统继电保护领域中的相关知识与经验予以统一整理分析,之后使用计算机的相关程序来进行模拟专家的对于这些问题的分析与判断,然后提出最终的解决方法。如用专家系统来排除故障,就可以将故障现场采集的数据及信息输入到计算机,通过专家系统来对故障产生的原因进行分析与判断,从而确定故障原因,维修人员就可以根据故障原因顺利地解除故障,恢复系统的正常运行。这样一来可以方便工作人员寻找系统出现故障的原因,能够及时采取有效的对策去解决问题。此外,通过利用这些规则还可以实现对继电保护设计中的问题全方位分析,进而可以解决电力保护设计中的矛盾冲突。同时,专家系统也可在系统的整体继电保护中得以运用,通过对整定原则、鉴别规则等的制定,从而对相应的电力设备实现智能调整及智能维护。
(二)暂态保护的应用
随着在继电保护中应用人工智能技术的不断研究和发展,人工智能技术不仅能够精准地判断故障,还能有效地解决单一工频信号的传统算法没有办法识别的问题,暂态保护技术就是其中的一种。暂态保护之所有能够快速而准确地进行故障判断,是由于暂态保护能够将所产生的信号运用在电力设备及线路的保护中,同时能够按照故障发生的类型、以及故障发生的位置与故障持续的时间等因素来加以综合分析及判断。因此能够有效地解决之前在传统继电保护方式中需要投入大量的人力和精力的问题,从而节省大量的人力物力并大幅地提升劳动效率。
(三)人工神经网络的应用
人工神经网络由于可以模拟人脑进行思考及处理问题,因此在电力系统的继电保护中得到了广泛应用。目前,主要运用在电力系统发生故障的类型及测定故障的距离等方面。
比如,对于非线性的过渡电阻发生短路这一现象,普通的距离保护对于故障发生的位置很难加以判断,因此极易造成拒动或者是误运作,但利用人工神经网络就能够正确地对故障加以判断,原因是由于神经网络中的故障样本涵盖了各种故障类型及故障原因。同时,也有人提出将人工神经网络应用于电力系统的继电保护的方向保护与电力系统的主要设备的保护当中。比如,用BP模型来判别元件,经过研究实践发现BP模型能够实现快速而准确地将故障的方向判别出来。
(四)模糊理论的应用
由于电力系统的故障与故障前的征兆相互间的关系并不明确,而是模糊的关系,而这种模糊关系是源于两者间的不确定性,因此导致诊断结果也相应地模糊,因此模糊理論的应用就可以较好地解决模糊性的诊断问题。目前,模糊理论在电力系统继电保护中的应用也日益广泛。比如,通过在继电保护中应用模糊理论能够实现有效地确定电力生产中的一些不确定因素以及对干负荷发生变化的不确定予以确定。模糊理论在电力系统中得以有效的应用能够使电力模糊系统变得完整有效。而与传统的无工电压算法相比,由于传统算法采用的是单目标法来对问题进行优化,故对于调节限制控制量的考虑并不充分,因此相比之下,模糊理论的效果要更加的明显。
(五)遗传算法的应用
遗传算法是在1975年由美国的科学提出来的一种计算模型,它主要是用于模拟大自然的遗传机制与自然界的适者生存理论,首先将相应问题的所有备用解都进行编码,然后按照其理论来进行全局优化搜索,从而找到问题的最优解集。遗传算法在电力系统继电保护工作中被广泛应用,如图像处理、电力系统无功优化、输电系统电容的最优化配置及控制及诊断输电网络产生的故障原因等方面都有应用。使用遗传算法的最大的限制是关于输电网络故障诊断模型的系统化科学化的建立,一旦这个问题得以解决,就能够使用遗传算法来有效地解决故障诊断问题。
(六)计算机化的应用
随着我国社会整体经济水平的飞速发展,计算机硬件也得到突飞猛进的发展,相应的危机保护硬件也得到有效提升。计算机化在电力系統继电保护中也被广泛应用,如今已经获得了令人瞩目的成绩和效果,同时电力系统对微机保护的要求也变得越来越高,通常情况下计算机化除了具备超强的保护功能之外,还具备超大容故障信息和数据的存放空间,可以实现对继电保护快速的进行数据处理,与此同时计算机化的应用还可以提高网络资源的通信能力,强大的通信能力能够大幅度提高电力系统继电保护工作的效率。此外,计算机化的应用主要是以共享全系统数据、网络资源能力的以及相关语言编程,进而不断提高电力系统继电保护工作的效率和质量,充分发挥人工智能技术的价值。
(七)小波分析的应用
随着国民经济的飞速发展电力系统也得到不断提升,人工智能技术也被广泛应用在继电保护中,如今已经获得了令人瞩目的效果和成绩,在电力系统中起着至关重要的作用。所以为了促进我国电力行业健康快速发展我们还应充分利用人工智能技术来优化继电保护工作,其中小波分析的应用在电力系统中有着很多的促进作用,它主要包括对电流电压等相关故障的分析和诊断,我们还可以将小波分析与现代化其他技术相互结合使用,通过小波分析的方式可以有效提取电流间断角的特征,随后在结合模糊理论对电力系统中的故障进行分析。此外,我们还可以利用小波变化分别提取电力系统中变压器正常运营的电流信号,以及变压器非正常运营过程中产生的电流信号,进而为后续电力系统继电保护工作提供数据基础。
三、结语
综上所述,随着人们生活质量的不断提升用电需要也逐渐增大,同时对电力企业供电的质量要求也变得越来越高,传统的继电保护已经不能满足当下人们的用电需求。而要想满足人们实际需求应将人工智能技术应用在电力系统继电保护中,该技术的应用可以推动我国电力系统朝着智能化方向快速发展,进而充分发挥人工智能技术的作用。
参考文献:
[1]徐英.人工智能在电力系统继电保护中的应用[J].电子技术与软件工程,2019(24):240-241.
[2]张育善.人工智能技术在电力系统继电保护中的应用[J].科技风,2019(32):175-176.
[3]孙滨.人工智能在电力系统继电保护中的应用[J].门窗,2019(20):267.