摘要:近年来,高压输电线路是电力系统的重要组成部分,由于其所经之处的环境恶劣,大多为旷野、丘陵、水域或高山等,线路长期暴露在自然界中,故极易受到外界的影响或破坏。目前雷击仍然是危及输电线路安全可靠运行的主要因素,雷电击中输电线路是小概率事件,雷击瞬时产生的高压与强电流影响、破坏甚至摧毁输电线路及相关电力设施,严重时会造成大范围停电,因此防雷保护成为输电线路设计中需要重点关注的问题。
关键词:输配电线路接地电阻;防雷技术;影响分析
引言
鉴于我国基本国情与能源发展现状,中国能源资源与负荷中心呈逆向分布,因而建成的高压及超高压线路输送量大、跨度长,跨越地区大都气候多变,地形复杂,对防雷技术有着很高的要求。2019年一、二季度,全国用电量3.398万亿千瓦时,同比增长5.0%,2019年7月中东部地区用电更是连创新高,持续增长的高负荷与季节性雷暴天气影响,给电网运行维护带来了极大挑战。为尽可能消除雷电给输配电线路带来的负面影响,除了预先在杆塔装设避雷线负角运行外,还可以设置线路避雷器限制过电压,安装接闪器承载直击雷放电,通过技术手段尽可能减小接地电阻等。
1输电线路防雷设计原理
在设计输电线路时,应分析线路所在区域气象条件、雷电流幅值密度,结合线路电压、设施安装分布等情况,研究雷击事件对电力系统的破坏机理,从而采取相应的对策。(1)输电线路合理选择路径。雷电发生的频率与输电线路所处的地理位置、地貌、降水量、雨季雷暴日等环境特征有关。在进行输电线路设计时,通过对气象资料的搜集和分析,在线路规划时避开山谷、水域上方及周边以及盆地等雷电频发区域,能够有效降低被雷电击中的可能性。(2)正确的防雷措施。目前输电线路的防雷保护措施主要通过架设避雷线,降低接地电阻,安装线路型避雷器,增设耦合地线以及提高绝缘等级等几种手段。架设避雷线和安装避雷器是输电线路防雷保护有效的措施。输电线路合理选择路径后,为了减弱雷电带来的电磁场、强电流以及热效应造成的危害,在输电线路安装避雷器和避雷线,将雷击释放的电流引向接地保护系统,保护输电线路免遭损坏。不同的电压等级输电线路的避雷器和避雷线的选择与雷击放电强度、雷电流峰值及防雷保护装置整定电流有关,也和输电线路接地保护系统的接地电阻、避雷线接地电阻等参数有关。(3)安装继电保护装置。采取各种措施虽能有效地降低雷击事件发生的频率,保护输配电设备免遭损坏,但雷电这一自然现象有着极大的偶然性。为了保证电力系统运行稳定可靠,还需安装继电保护装置,缩小雷击事件波及范围、降低断电可能性,提高电力系统故障自愈性。确保当雷击事故发生瞬时性故障时,输电线路能自动合闸供电。(4)“疏导式”防雷保护。目前各种防雷措施的核心思想是尽可能提高线路的耐雷水平,减少雷击跳闸率。我国把线路雷击跳闸率作为考核电网安全运行的重要指标,也即是“堵塞型”防雷保护方式,这种方式在电源点稀少,电网网架薄弱的情况下是合适的,但实际中投资巨大,且技术上难以实施。因此,一些防雷研究专家又提出间隙防雷这种“疏导型”防雷保护方式,其核心思想是允许运行线路有一定的雷击跳闸率,采用间隙装置并联于绝缘子上,以定位雷电闪络路径,疏导工频电弧,避免绝缘子损坏,虽有雷击闪落,但重合闸能够成功,就不必担心线路的雷击事故。因此,若将两种方式很好地结合起来,因地制宜地采用,输电线路防雷保护工作将更进一步。
2输配电线路接地电阻对防雷技术优化
2.1建立健全的检修维护机制
(1)相关部门要对输电线路的检修维护机制进行完善,明确线路检修工作内容和方法,并提升相关人员的专业技能和责任意识,同时,还要对各项规章制度的执行情况进行有效监管,以保证线路维护工作效率和质量的提升。
(2)对线路检修工作要做好记录与总结,工作人员在对线路进行检修后要及时对线路情况进行记录,并建立线路维护检修的数据资源库,以便随时对线路运行与检修情况进行查询,为线路的检修维护工作提供必要的数据支持。(3)要通过规章制度的制定和执行,加强对输电线路检修维护工作的监督管理,监督管理人员要定期对线路运行情况及运维工作情况进行监察巡视,同时,线路检修部门也要加强对自身工作质量的监督和自检力度,从而使输电线路始终保持安全稳定的运行状态。
2.2垂直接地体降阻手段
在装设接地网时,由于不同土质其电阻率不同,同一土质因湿度与温度变化其电阻率也存在着差异,此外,还应考虑地形地貌、可装设面积等因素。对于含水量丰富或因其他元素导致土壤电阻率较低的地区,应该充分考虑架设垂直接地体的必要性,与此同时,若因面积受限导致水平接地体无法达到预期的降阻效果,也应考虑垂直接地体的可行性。但这并不意味着垂直接地体的数量越多,深度越深,降阻效果越好。若单位面积内垂直接地体装设数量过多,降阻率将趋于饱和,其深度也应视实际地形土壤情况而定。(1)使用降阻剂降阻。降阻剂是一种导电性良好的材料,将其灌注于接地体周围,可在渗透周边土壤后利用自身导电性良好的特性同步降低土壤电阻率,达到减小接地电阻的效果。此外,通过连接接地体与导电性得以改善的土壤,达到扩大散流面积的目的。此法适用于小型接地网或集中型接地网。(2)运用降阻模块。由于降阻剂可能污染、腐蚀接地体,分布不均还会导致降阻效果不及预期等问题,故仍需通过其他方法得到进一步改善。降阻模块就是一种新解决方法,降阻模块是加入胶黏剂后通过物理方法将降阻剂与接地模块整合,由电导率高的金属引线将主地网与降阻模块结合起来,达到更为稳定的降阻效果。(3)爆破接地技术。通过局部小规模爆破将土壤电阻率较高或岩石较多的地下空间腾出缝隙,再将低电阻率材料通过灌注填充缝隙,从而通过缝隙间的低电阻率材料将接地网与电阻率较低的土壤层或水层等形成接触,扩大了接地网的散流面积,有效降低了接地网电阻。(4)采用新型材料。接地网长期遭受着复杂的气候、湿度、酸碱性不平衡等不同环境因素带来的腐蚀影响,因而采用导电性与耐腐蚀性较强的新型材料作为接地体从长远来看很有必要。纳米导电材料等新型材料具有极强的抗腐蚀能力与导电性能,例如,纳米导电精,其特殊的化学结构赋予了它可以通过化学键与金属紧密结合的能力,将这类新型材料结合现有技术在成本可控的范围内合理地进行运用,对接地体导电性能和抗腐蚀性的提高极具前瞻性。
结语
通过对全文的总结可以得知,在我国社会经济高度发展的今天,我国对于电能的需求量也在不断提升,这就对输电线路运行的稳定性和安全性提出了更高的要求。在输电线路的各类影响因素中,雷击灾害对于线路造成的损伤是十分严重的,甚至有可能引起较大规模安全事故。所以电力企业应不断加强对输电线路的防雷安全设计,通过采取具有针对性的有效措施,降低线路遭受雷击的概率。同时,电力企业还要不断强化对输电线路的运行检修与维护工作,提升线路整体质量,防患于未然,保证输电线路的稳定运行,促进我国电力事业的进一步发展。
参考文献
[1]郭省平.输电线路运行故障原因及查找[J].科技与创新,2015(20):144.
[2]谢家力.输电线路防雷措施探讨[J].技术与市场,2015,22(10):31.
[3]罗剑.10kV线路单相接地故障分析及处理方法[J].企业研究,2010(20):58-59.
[4]严玲.浅议输电线路雷击故障及防雷措施[J].中小企业管理与科技(下旬刊),2010(08):42-43.
[5]胡毅.输电线路运行故障的分析与防治[J].高电压技术,2007(03):87-88.
[6]杨雨来,钱归.架空输电线路的防雷设计和接地设计[J].商品与质量?理论研究,2014,(6).