电厂锅炉应用于热能与动力工程的创新研究

发表时间:2020/4/30   来源:《电力设备》2020年第2期   作者:郭微 夏悦
[导读] 摘要:由于人们生活水平越来越高,人们明确提出了对电能的需求,进而出现了严重的能源紧缺问题。
        (哈尔滨汇焓科技有限公司  黑龙江省哈尔滨市  150000)
        摘要:由于人们生活水平越来越高,人们明确提出了对电能的需求,进而出现了严重的能源紧缺问题。在发电厂内部中,重要的生产设备就是电厂锅炉,而在热能动力工程中,电厂锅炉得到了广泛地应用,这已经得到了专业人士的高度重视。本文对电厂锅炉应用于热能与动力工程的创新进行分析,以供参考。
        关键词:电厂锅炉;热能与动力;创新研究
        引言
        热能动力工程的技术性很强,对于专业要求也较高,其理论具有普遍性,是跨热能动力工程以及机械工程综合性专业知识的合流,该技术运用的是机械能和热能二者相互转化的核心技术原理,为锅炉生产过程提供了源源不断的动力支持,带动了电厂锅炉行业的崛起,最终实现了热能动力工程的可持续发展。提升锅炉的应用效率,可以服务于社会主义建设,促进经济的持续发展,为环境清洁发展的持续发展奠定基础。
        1电厂锅炉概述
        电厂锅炉是用于火力发电厂的热力设备中的一项,通常与之定额容量的汽轮发电机配套使用,主要作用是通过热能提供发电供给性输出。电厂锅炉通过燃烧产生热能,根据材料燃烧及功能应用的角度划分,可将锅炉划分为较多种类,以此来满足多项需求供给,然锅炉划分种类虽多,但其主要的控制部分和外壳部分基本上维持不变,锅炉的控制部分是锅炉构成的核心中枢,其主要作用是控制燃料的燃烧,现价段我国电厂所使用的锅炉中占据较大使用比例的为电子控制,随着科技时代的发展,电厂锅炉的控制功能也在趋于完善,争取最终实现精准操控的应用效果。
        2热能和动力工程
        在热能动力学中,实现了热能向电能的顺利转变,通过使用和转变能量,可以有效控制自然资源的使用量,这对于实现可持续发展具有很大的帮助。在具体划分中,主要包括热能和动力体系,而且这两者之间的相互转化关系显著,可以借助蒸汽,促使热量的产生,并实现向电能的顺利转化,为提高电力系统服务水平创造条件。根据相关统计资料发现,2018年火力发电在全部发电量中占有较高的比重,高达72%,而电厂锅炉的效率仅仅占据40%,浪费了诸多不必要的能量。在相关研究中,锅炉效率在上升1%以后,发电效率会提高至0.3%,燃烧消耗量可以得到有效控制,从而有助于电厂的发展。所以在电力系统发展过程中,提高锅炉的热能转变效率尤为关键,借助热能动力理论,为应用热能转化技术提供一定的依据。
        3电厂锅炉设备与使用特点
        高新技术的发展,促使电厂锅炉朝着自动化与现代化方向发展,有效将人工成本减少了,更使工作效率大幅度提升。一些锅炉生产厂家开始加大对节能、环保型锅炉的生产,对循环流化床燃烧方式广泛运用,该方式能对无烟煤、煤泥等燃烧质量好的煤种高效使用。通过使用这些优质煤种,锅炉运行中燃烧率可达到95%以上,将能源利用率大幅度提高了。此外,分段燃烧成为主要的燃烧形式,有效减少NOX排放量。燃烧时使用含硫量较高的燃料,为使二氧化碳的排放量减少,可以向锅炉中添加适量石灰,还能预防硫元素对锅炉元件的腐蚀,产生的煤渣活性也将更高。
        4电厂锅炉应用在热能动力中的发展意义
        热能动力工程在电厂锅炉广泛运用下得到大力发展,比起过去的燃气锅炉,采用全自动化方式进行生产,将人力成本大大降低,极大提高了生产效率。此外,自动化操作系统下,可以将各类操作风险消除,比如“漏气”“漏油”等,能将人为误差减少,为节能生产创造了良好条件。目前,大气污染已经非常严重,对电厂所产生的各项污染进行控制已经迫在眉睫,尤其是二氧化硫、烟尘这样的较为严重的污染物,会造成较严重的大气污染,更会破坏生态环境。由此,对锅炉生产结构优化改进,将锅炉使用性能提升,对减少污染。


        5影响锅炉热能转化效率的因素分析
        电厂锅炉在工作中通过燃烧产生热能,通过热能传导作用,将液体转化为气体,当液体转化为气体时,其体积会因形态变化而使整体体积增大,从而导致承载体内压力增大,当液态转化成的气体通过汽轮机的膨胀作用后,完胜能量转换生成电能,然后气态的水重新转化为液态的水,循环往复实现能量间的转换工作。在整个能量的转化过程中,评论动力装置的标准是产出值与消耗值之间的比例值,当该比值呈现数值较大时,则反映出锅炉的热能转化效率较高,而当该比值呈现数值较小时,则证明锅炉的热能转化率较差。
        6电厂锅炉应用在热能动力工程中的自动化管理探索
        锅炉的核心结构是由套管电气系统和燃气锅炉控制系统的,锅炉外壳的组成结构包括下壳体和壳体两个组成部分,下壳体的功能是对锅炉的燃烧结构进行固定,属于一种新型的燃烧器、膨胀罐部件结构,壳体下部的连接主要是起到了使整个锅炉进行完整的结构连接的作用。锅壳可以起到保护锅炉的效果和目的,确保锅炉设备的高效率运行状态,属于锅炉组件中最为核心的硬件组件。除了对于锅炉设施予以保护的部件之外,燃油泵可以凭借着燃气泵的开关阀控制其运行程序,在此基础上为别的部件和系统的运行提供保护作用。电流控制是自动控制和管理控制方面的主要模式。随着国内经济的大力发展,配套设备以及生产同类产品的企业数量在逐渐地增加,产品的技术特性与时俱进,不断更新换代,所以更多的机类型实现了数字化的技术效果,可以使锅炉的安装程序通过电脑系统的管理控制,达到自动化管理控制的目标。
        7电厂锅炉应用于热能与动力工程的应用创新
        7.1调整吹灰技术
        通过吹灰方法的应用,可以避免消耗过多的热能,对灰尘的总量进行控制,确保锅炉运用效率的稳步提升。在吹灰过程中,要对气温进行改善,在锅炉燃烧过程中,要防止结渣现象出现在温度高的地方,不断提高锅炉内物资充分燃烧效率,而且将锅炉内外的温度差降至最低,给予较高温度一定的保证。
        7.2完善电厂锅炉燃烧技术掌控
        电厂锅炉的工作原始是依靠热能与动力工程间的原理来进行能量转化的,锅炉通过燃烧燃料来产生热能,在锅炉燃烧过程中,燃料的燃烧情况将直接影响到锅炉热能的产出值,为了助力燃料充分燃烧,有效压缩产出气体助力气体输送,完成机械能转化的进程,这时就需要推进式助力风机的加入,然而为了满足现阶段及未来发展对于能源的需求,传统的老式锅炉中风机设置已经不能满足供给需要了,超强负荷下越来越多的问题呈现而出,一些因风机超负荷运行而形成的安全隐患也频频发生,为了减少隐患的发生造成的不必要损失,提升能源整体产出量,相关工作人员应针对现有发展需求及机械运行负荷量来进行风机的改良升级,以此来保障能源间的高效转化,实现高产量安全生产。
        7.3对锅炉内部结构优化
        要使锅炉在热能动力中的应用更有效率,设备安全是重要前提。要始终做出监测,对锅炉的整体运行情况,尤其是锅炉的运行状态,因为一旦有运行的异常情况不能及时处理会埋下安全隐患,影响整个电厂的生产运营。为此,要及时针对运行状态做好数据监测与记录,将最优的方案拟定出来,从而为后期的评估提供依据,保证锅炉各项性能满足生产需求。因锅炉通常要使用很长时间,定期对设备检修,保证各零部件符合检验标准也是安全生产的必要条件。
        结束语
        综上所述,在热能与动力工程中,电厂锅炉得到了广泛地应用,可以满足电能实际需求,有效处理和应对资源紧缺问题,确保电厂生产效率的稳步提升,为发电厂发展提供更为广阔的发展空间。
        参考文献:
        [1]李洪亮.热能与动力工程在锅炉应用中的问题分析[J].科技经济导刊,2019,27(36):89.
        [2]2019年《热能动力工程》索引[J].热能动力工程,2019,34(12):1-18.
        [3]张海荣.热能与动力工程中的节能技术探讨[J].科学技术创新,2018(28):173-174.
        [4]张洪博.热能与动力工程中的节能技术探讨[J].能源与节能,2018(03):81-82+90.
        [5]丁雪.节能降耗中热能与动力工程的应用[J].现代工业经济和信息化,2017,7(21):30-32.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: