郝树豪
国能粤电台山发电有限公司 广东台山 529228
摘要:随着经济的发展,人们对电力的需求越来越大。为了实现现代社会对电力的需求、建设资源友好型的社会愿望,提升电厂的电力产出效率显得尤为重要。因此,在简要介绍热能动力工程的基础上,重点对发电厂热能动力工程存在的问题、解决方法和主要性能的应用进行分析,希望为国家发电厂工作提供一定的理论基础。
关键词:发电厂;热能动力工程;主要性能
1 发电厂热能动力工程中存在的主要问题
1.1 重热问题
在电厂运行中需要用到很多汽轮机,这样会带来一定的热量损失。为了减少热量损失,通常会使用汽轮机将一部分热能重新吸收利用,以提升汽焓值。重热问题是发电厂在进行内转换时,将前一过程能量应用于下一过程,在存在相同的管道压力时,前一过程中的焓值会在后一过程中出现大幅度下降现象。所以,电厂在实际生产中应根据情况适当提高重热系数,以提升能量的重复使用效率[4]。虽然适当的重热现象能够提升平均效力,还有助于电厂的顺利运行,但是过度重热现象依旧会影响发电厂的资源利用率。这主要表现在三个方面。第一,重热问题不仅会使发电厂的能源得不到有效储存,还会降低电能效果和品质;第二,重热问题会导致锅炉燃烧程序不稳定,进而影响蒸汽排放,最终影响发电体系;第三,重热问题也会影响气压稳定性,致使压力发生变化。
1.2 一次调频问题
一次调频指在电网频率超出标准范围后,为了保证电网运行的稳定性,系统会经过适当向上或者向下改变机组的功率,使整个机组处于同一频道运行的新平衡状态。主要表现为:第一级阀门打开使得工作状态下的流量开始增加,压力随之升高,焓值降低,这时要降低调节级;如果出现第一级阀门打开而第二级阀门没有打开的状况,设备的整体焓值则处于最低状态,此时如果设备整体出现工作状态变化,设备的压力比和焓降量均处于较为稳定的状态;如果末级流量上涨过大,为保证频率保持稳定,焓降需要适当提升。实际操作方法为:首先按照体系实际流量最大阈值做出判断,然后根据负担情况提升调整功用;如果负荷转变过大,一次调节已经无法影响频率,这时可以采取二次调频的方式。一般,依据是否通过智能化将二次调频的方法划分为受控非智能化和自动智能化。随着智能化的普及,厂家更青睐使用智能化调频方法。工作人员在实际应用时也可以根据不同情况随时转换调频手段,以保证设备运行的稳定。
1.3 节流调节环节的问题
节流调节指当外界负荷发生变化时,进入汽轮机的蒸汽通过同时开启关闭调节阀,利用节流改变汽轮机进气量的过程[5]。一般,节流调节更适用于小容量的机组,对于负荷较大的机组不具备太高的使用价值。因为更大的机组会使分配到每个机组上的数值变小,相对的临界压力数值也会变小。一般会对工作级组进行控制。假如实际工况并不相同,也要保证不同级的流通面积不变。这样能够更加准确的掌握功率和零部件的受力变化情况。另外,如果想要检测汽轮机是否正常流通,可以采取24h动态监测方法,或者根据不同级机组的实际
压力情况进行判断。
1.4锅炉排烟损失问题
锅炉是火电厂的主要工作装置,其中排烟温度是影响锅炉正产运行的主要因素之一。一般,只要合理控制排烟温度,就能保证锅炉的运行效率。专家们经过试验研究发现,排烟温度和实际排烟量存在紧密关联,过大的排烟量会产生巨大的损失。经过验证发现,排烟温度产生影响的主要因素有三种:燃料、风温和风速。因此,为控制合理的排烟量和排烟温度,要选择杂质少且灰分和水分适中的燃料,以提升燃烧效率。还要控制风温和风速,保证燃料供氧适宜,提升燃烧质量。
2 发电厂热能动力工程主要性能的应用分析
2.1 节流调节的应用分析
节流调解中没有调节级的说法,在第一级调节即可完成全周进汽。这种设计的优点是,一旦工况发生变化,各级温度的改变很小,几乎可以忽略不计,同时表现出较好的抗负荷特性,使节流调节能够应用于基本负荷的大机组和小容量机组。但是,工况彼此会产生一定的节流损失,使发电厂热能动力工程在热电厂的实际运行中表现出较差的经济适用性[6]。因此,减少节流损失显得尤为必要。实际调节中,先运用弗留格尔公式计算同流量下各级的压差和比焓降,确定各零件的受力和工作功率,再检查汽轮机是否正常流通。该过程也可以被看做在已知流量的前提下,对各级压力公式符合度进行计算,最终得到节流面积变化,确定节流量。经过多年的验证可以认为,弗留格尔公式的出现不仅保证了有效的节流调节,而且为热能与动力工程在热电厂的应用提供了可能性。
2.2 调压调节性能的应用分析
调压调速指调节电动机端电压使电动机在某一转速范围内实现无级调速。调压调节优点和缺点并行。它的优点为电机运行在整个调速范围内都平稳,具备较强的运行稳定性和负荷适应性,并且具备最大的调速范围,对部分机组的经济效益有提升效果。但是,在高负荷区域,调压调节并不能实现具有经济效果的调节结果。同时,在最低转速时,噪音变大,且这一现象随着负载的增加表现出越发严重的趋势。另外,当大机组蒸汽在动叶栅内做功后,存在必然的机械能转化,这种损耗会降低蒸汽余速、造成鼓风损失和斥气损失等,必然会增加汽轮机组运行的成本,缩减热能与动力工程在热电厂的应用范围[7]。
2.3 湿气损失控制的应用分析
湿气造成的能源损耗主要是湿气流动产生的热损失。另外,水蒸汽凝结也会造成热能损失。湿气损失会使发电机组的动叶进汽边缘产生冲蚀,降低叶片长度,减少叶面实际面积,缩短叶片使用年限,尤其在叶顶背弧处最为严重。为了降低湿气对叶片的损伤,可以采用以下方法:首先应该除湿,可以选用汽水分离加热器,保证低压缸的效率和安全性;其次,可以选用带有吸水缝的喷灌,降低设备湿度;最后,可以降低机械损失(例如:推力轴承与支持轴承的摩擦力、启动调速器等的机械消耗),使用轴流式汽轮机创造高压向低压的指向力,降低能量消耗,提升运行速率。此外,可以改进叶片设计,提高叶片抗冲蚀性能。
2.4工况变动的应用分析
工况是运行工作状况。设备工况可以通过一系列有关的运行参数或工况参数来反映,如锅炉的蒸发量、锅炉效率和烟气温度燃料量等。当设备处在某种运行状态时,各参数都不变,此时处于稳定工况。如果设备运行条件改变,这些工况参数就要相应发生变化。发电厂中,工作人员要根据实际情况进行具体判断。选择合适调配方式是工作人员提升自身技术的途
径之一[8]。如果机组处于并网运行中,外接电网就会根据机组的运行状况不断改变,而过于频繁地更替也会影响机组的正常运行。工作人员要立足于对并网运行的正确认识,选择合理的调配,避免因为调配方式的不同而使热能与动力工程应用效用低下。
4 结 论
在我国建设资源节约型社会的今天,热能动力工程在电厂运行中越来越受到重视。在一代又一代人的努力下,热能动力工程的应用取得了很大进步,同时也存在很多问题。无论是重热现象、节流调节还是湿气损耗,任何环节的问题都会影响发电厂的稳定运行。因此,发电厂人要不断吸收同行工作者的经验,学习国外的先进技术,不断充实自己,提高自己的技术水平,提升热电厂的热能使用率,为我国发电厂工程的正常运转提供充足的理论保障和实践经验。
参考文献:
[1]于亚男,孙祚琦.简述热能与动力工程的科技创新[J].科技创新与应用,2016,(7):12-13.
[2]庞 伟.浅谈电厂中热能与动力工程的应用分析[J].科技与企业,2015,(13):120.
[3]于光佐.论热电厂中热能与动力工程的有效运用[J].科技创新导报,2012,(28):142.
[4]曲昱霏,庄廷勇.锅炉领域中热能与动力工程的有效运用策略探究[J].科技创新与应用,2016,(6):137.