人脸识别技术会带来一场个人隐私的沦陷吗

发表时间:2017/9/28   来源:中国新闻周刊   作者:
[导读] 人脸识别技术有广阔的前景,也潜藏着安全隐患。这项技术会是一场全新   人机交互革命的开端,还是一场个人隐私的沦陷?
  文/罗元婕
  9月12日,新一代iPhone面世,苹果公司这款新产品最大的亮点之一就是全新的身份验证系统——“Face ID”,即脸部识别功能。这一被形象地称为“刷脸”的功能,基于被网友戏称为“刘海儿”的“原深感摄像头采集系统”的运作,感应器会读取用户独一无二的脸部几何结构图,并将它与被保护在 A11 仿生安全隔区内的数据进行对比,如果二者一致,iPhone X 便会解锁。
兰州火车站启用人脸识别系统,旅客使用人脸识别进站系统进站。 杨艳敏 摄
资料图:兰州火车站启用人脸识别系统,旅客使用人脸识别进站系统进站。 杨艳敏 摄
  苹果公司提供的数据显示,Face ID的红外线发射器可以发射3万个侦测点,以3D形式记录和识别用户面部,可以如Touch ID(指纹识别)一般解锁手机、用Apple Pay支付和应用于第三方App中。也就是说,之前Touch ID能用的场景,Face ID将同样能够使用。
  据苹果公司统计,iPhone用户平均每天要解锁手机80次,有了人脸识别解锁功能后,解锁过程将被大大地简化。
  如此简单的解锁方式是否会有安全隐患?苹果高层强调,人脸识别解锁非常安全,手机使用3D形式认证用户面部,只有当手机处于稳定状态,而且用户直视镜头的时候,才能开锁,系统不会被面具或照片所蒙蔽。当用户转移视线或闭眼时,屏幕就会自动被锁定。用户的脸部信息数据将安全地存放在手机本地存储里,不会被上传到云端。
  40年刷脸技术路
  人脸识别属于生物特征识别技术中的一种,它指的是对生物体(一般特指人)的生物特征来区分每一个个体。脸、指纹、手掌纹、虹膜、视网膜、语音、体形、个人习惯(如签字)等生物特征的识别,都有相应的识别技术支持。这些特征常被视为便捷的身份认证形式,因为它们大多与生俱来,且具备唯一性。
  人脸识别技术的研究从20世纪60年代就开始了。起初,这项技术还不是全自动的。程序会计算五官之间的距离和比例,再把得出的数据与数据库里已有的参考值进行对比,但程序操作者需要手动“锁定”脸部特征,如眼睛、耳朵、鼻子和嘴巴,实验才能继续。
  到了上世纪70年代, 研究人员创造出一套可以自动识别人脸的程序,这套程序利用21个特定的面部特征,如发色和嘴唇厚度等等来判定人脸。80年代末,一项突破性的研究发现,要准确识别一张正常的人脸,只需要不到100个特定变量。
  随着1990年代计算机技术的高速发展,加之美国军方因反恐需要开始资助相关研究,人脸识别技术才迅速从理论落实到应用上。美国国防部资助的FERET项目分别在1994年、1995年和1996年组织了3次人脸识别评测,几种知名的人脸识别算法都参加了测试,这3次测评直接推动了人脸识别算法的改进。
  “9·11”事件发生后,为了遏制恐怖袭击,美国对人脸识别技术更加重视,并且在安防领域被更加广泛地推广应用。

其后十年,人脸识别技术仅局限于安防领域,一直没有实质性突破。虽然民用市场上也出现了这类产品,但大多只是集中在门禁、考勤和监控系统这类安防系统上。唯一的例外是2006年,尼康公司率先将人脸识别技术运用到产品当中,新款相机在拍摄时能自动搜寻人脸并优先对焦。
  转机出现在移动互联网时代,巨头们率先出手。2010年年底,Facebook(脸书公司)在美国率先推出使用人脸识别技术的“Tag Suggestions”功能,并于2011年6月将这一功能扩展到美国以外的大多数国家。谷歌也于2011年12月在Google+上推出类似功能“Find My Face”,允许用户通过面部识别功能,自动寻找好友相册中的自己。
  之后两年,上述两家公司想分别收购多家人脸识别技术创业公司,如谷歌2011年收购的“匹兹堡模式识别”(PittPatt);2012年Facebook收购的以色列脸部识别技术公司Face.com,试图实现不用标注就能自动识别照片中的人物,帮助用户进行照片分类。
  2013年,芬兰创业公司Uniqul推出了一款基于脸部识别系统的支付平台,支付时只需要面对POS机屏幕上的摄像头点个头,并点击“OK”即可。Uniqul 还对此技术申请了专利,并号称拥有“军用级别算法”的保护。这是全球第一次将人脸识别运用到支付领域。
  2013年12月,Facebook在纽约创建了深度学习人工智能实验室,力邀深度学习鼻祖Yann LeCun加入。在他的推动下,2014年Facebook的DeepFace技术脸部识别率的准确度达到97%。2015年,Yann LeCun公开表示,现在即便在图像中没有正脸,他们研发的程序也可以从用户的发型、姿势和体型判断出其身份。2014年初,谷歌用4亿美元收购了深度学习算法公司DeepMind以及图片分析公司Jetpac,之后推出人脸识别技术 FaceNet。
  在中国,百度在2014年5月也招纳了深度学习领域的大牛吴恩达加盟成立深度学习研究院,2015年发布脸优产品。2015年3月,马云在汉诺威消费电子、信息及通信博览会上向德国总理默克尔与中国副总理马凯演示了蚂蚁金服的Smile to Pay刷脸技术,为嘉宾从淘宝网上购买了1948年汉诺威纪念邮票。
  随着移动设备处理能力的提升,人脸识别技术迅速突破安防领域,涌向日常应用,在金融系统、娱乐等其他领域发酵,创造了巨大的商业价值。
  目前,深度学习正逐渐被应用于人脸识别中,深度学习将特征提取和分类两个步骤融合在一起,利用神经网络黑盒子的特性,计算出最适合的特征提取模式,直接跳过“特征提取影响识别结果”这一缺陷,让算法更适用于不同的实际应用。
  人脸识别技术的种类虽然繁多,但底层算法大同小异,识别图片的“多样性”和“精准性”才是衡量技术高低的重要标准。只有把一定规模的训练数据“喂”给机器,提升它深度学习的能力,才能保证人脸识别技术在实际应用场景中达到预期的效果。这也就意味着,为了提高算法的准确性,大量的数据积累是必不可少的。
投稿 打印文章
留言编辑 收藏文章 推荐图书 返回栏目 返回首页

  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: